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Information in this document is subject to change without notice and does not
represent any commitment on the part of the authors. The database described
in this document is furnished under a license agreement. The user may not
copy the database on magnetic or optical tape, disk or any other medium, for
any other purpose than the license holder’s personal use.

Copyright

This database design and accompanying written materials are products of
copyright c© owners and thereby protected by international copyright laws
and treaties. You must keep the database package in strict confidence and
treat it like any other copyrighted material. You may not copy the database
or the written materials accompanying the database package except as explic-
itly allowed by the license. The use of the database package must be in strict
adherence with the license.

License

The Apache License, Version 2.0, is applied for the released Linssi database
scripts. The license document is included in the script package.
The Apache v.2.0 license terms are applied, because they allow the users to
modify the scripts for their own application and even distribute them further.
The idea is also that any generically improved scripts are returned to the script
repository, leading to a community development in open source spirit.

Publications and Acknowledgement

The users of Linssi shall explicitly acknowledge the use of Linssi in any publi-
cation or communication, scientific or otherwise, relating to such use, by citing
the Linssi set of references defined at http://linssi.hut.fi.

Disclaimer of Responsibility for the Software

The database design is provided “as is” without warranty of any kind, either
expressed or implied, including but not limited to the implied warranties of
merchantability and fitness for a particular purpose. The authors do not war-
rant that the functions contained in the design will meet any requirements or
that the operation of the database will be error free.
In no event will the authors be liable for any damages, including any lost
profits, lost savings, or other incidental or consequential damages arising out
of the use or inability to use the database, even if authors’ representative has
been advised of the possibility of such damages, or for any claim by any other
party.

MySQL is a trademark of MySQL AB. Shaman is a trademark of Baryon Oy.
Sampo, MicroSampo and Sampo 90 are trademarks of Logion Oy. Uni-

Sampo is a trademark of Doletum Oy. Other trademarks are the property of
their respective owners.
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Any data may be defined in one place only.
If data are defined in more places, they will diverge (it will not stay the same,
if it ever was). If data are changed while not in one place only, you never
know whether you changed every instance. However, you need a method
(document control) that assures that all places where the changed data is
referenced from are informed of any change. Relational databases use this
principle. The same applies to software: every function should be defined
only once (it would have made the millennium problem a piece of cake!).

Niels R. Malotaux
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Chapter 1

Introduction

This document is targeted to people who know what the SQL database for gamma-ray
spectrometry called Linssi is. Linssi is documented in a comprehensive manual [1]. Please
read at least the chapter “Introduction” of the database manual carefully before proceeding
with this document. Knowledge of Linssi version 1.1 [2, 3] is helpful but not necessary.

The purpose of this manual is to document the scripts available in the Linssi package and
how Linssi can be interfaced with software packages for radiation spectrometry. The scripts
are self-documenting: they are requested to start with a comment block that explains their
purpose, syntax, history and relevant information about their action. These comments have
been utilized in generating this manual, with the aim to present a general view of the complete
package.

All Linssi scripts in the package are not necessarily documented here, because new scripts
may be added to the distribution more frequently than this document is updated. An up-to-
date list of the scripts will be maintained on the Linssi home page http://linssi.hut.fi/.

The UniSampo–Shaman (USS) analysis package is documented in comprehensive manu-
als [4, 5]. It has been interfaced with Linssi, UniSampo since the first database version
and Shaman since Linssi v.0.9 in July 2003. As a consequence, functionality of the analysis
result tables of Linssi has been tested most thoroughly.

Nevertheless, it should be stressed that the development goal of Linssi has been to be as
generic as possible so that it can be connected with spectrum analysis software packages other
than UniSampo and Shaman. As an illustration, the spectrum analysis tool Aatami de-
veloped by the Evaluation Section of the CTBTO (Comprehensive Nuclear-Test-Ban Treaty
Organization) was interfaced with Linssi in December 2004. Later, STUK (Radiation and
Nuclear Safety Authority of Finland) has interfaced many of their in-house analysis tools
with Linssi. The occurrences of UniSampo and Shaman in this document shall mainly be
understood as examples. Additionally, this document is meant to serve as a documentation
of the functional UniSampo-Shaman-Linssi-system operated at STUK, Health Canada,
and other organizations.

We have chosen MySQL as the database engine. However, a Linssi database can be im-
plemented with any SQL engine (PostgreSQL, Oracle, etc.) and its documentation is inde-
pendent of the choice. The same is true for the adopted interface between Linssi and any
analysis software package. On the other hand, the database scripts written in SQL, Perl and
PHP may be engine-dependent, so their applicability is to be evaluated with other database
engines but MySQL. However, we do not expect any major difficulties in porting the scripts
to other engines.
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Chapter 2

Linssi Interface, Configuration and
Documentation

This chapter presents basic information of Linssi user interface, configuration principles and
script documentation instructions. These are the basics that help the reader to understand
the following chapters.

2.1 Basic Linssi Interface: LinssiWorld

Experienced users may use Linssi through SQL-queries on the MySQL command prompt or
through scripts written in Perl and SQL. For an ordinary user, the main Linssi interface is a
Linssi home page known as LinssiWorld in a WWW browser, by default the one shown in
Fig. 2.1. The exact contents of the home page may vary from one organization to another,
but the distributed version has the following functionality in this interface:

• Queries for sample, measurement and analysis data.

• Display of analysis data in different formats of text reports.

• Display of analysis data in graphical format with zooming capability.

• Display of measurement systems: stations, detectors, setups.

• State-of-health and Quality Control displays.

• Display of calibration data in text and graph, with an update option.

A LinssiWorld installation is available in the WWW at http://linssi.hut.fi/. This
demonstration installation has all features of the distributed script package, but it lacks all
update features, for obvious reasons.

The wide variety of Linssi scripts available in the distribution, illustrated by the demonstra-
tion version, are presented in detail in the following chapters of this document. Only the
most essential scripts are included. A comprehensive reference list of the basic Linssi scripts
is presented in Ch. 7, useful when one is looking for a Linssi script for a specific purpose.

The files connected with the distribution package of Linssi scripts include the following
LinssiWorld pages:

2
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Figure 2.1: The distributed version of LinssiWorld v.2.3.
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linssi.html

Purpose: An example of a LinssiWorld web page, calls linssi 23.html

Package: Linssi core (v.2.3)

Created: 18.1.2012

linssi 23.html

Purpose: An example of a LinssiWorld web page

Package: Linssi core (v.2.3)

Created: 18.1.2012

linssi.css

Purpose: Style sheet for LinssiWorld

Package: Linssi core (v.2.3)

Created: 18.1.2012

help.html

Purpose: Help page for LinssiWorld

Package: Linssi core (v.2.3)

Created: 18.1.2012

2.2 Basic Linssi Configuration

For using Linssi, configuration on two levels is needed: on the administrator level and on the
user level. The basic configuration files are linssiConfig.php and .linssirc, respectively.
The former is utilized in WWW-based usage of Linssi i.e., with PHP-scripts, and the latter
in all other Linssi usage but PHP-scripts.

Step-by-step installation and configuration instructions for the Linssi administrator are pre-
sented in App. A. The basic configuration like creating the database and its users is done on
the command prompt or using the scripts of Ch. 3.

linssiConfig.php

The configuration file linssiConfig.php shall be scrutinized before the WWW interface
LinssiWorld can be utilized. This PHP configuration file contains various settings needed
in the PHP scripts like:

• paths to external libraries,

• basic database settings,

• option settings,

• directory settings.

4



The linssiConfig.php file in the distribution contains the default settings, but they must
naturally be adjusted if a non-default installation is made. The distributed linssiCon-

fig.php is extensively commented, making it self-documented.

.linssirc

The configuration file for a Linssi user is .linssirc and the Linssi script distribution includes
a template file for it, named linssirc-template. This template file must be checked by the
administrator and modified to reflect the Linssi environment in use. The updated template
file is then copied to the Unix home directory of each user allowed to use Linssi.

If there are several databases available, a separate file shall be made for each of them, named
as .linssirc* where * can be any string allowed by the operating system. A symbolic link
named .linssirc may be made to the default one.

The administrator shall define the user-specific usage permissions in the updated .linssirc

file. For example, if there are users only allowed to read a database, their .linssirc should
not contain a [write]-section with write username and password.

The structure of .linssirc is such that various options are defined and organized in sep-
arate sections. The file is always started with a default section that contains the following
obligatory options (see for additional explanations in the comments of linssirc-template):

• databaseVersion:
version of Linssi database schema

• databaseScriptDir:
directory where Linssi Perl scripts reside

• databaseName:
full name of the database as given to Perl scripts (may include host and port)

• databasePlain:
plain name of the database without host or port

• databaseHost:
name of the database server (def. localhost)

• databasePort:
server port number for MySQL connections (def. 3306)

• odbc:
selection of ODBC drivers (0 or 1) [7]

Then come the optional sections, most often [read] and [write]. As shown, section names
are in brackets and they contain a list of section-specific options. In the named sections, the
following options are to be specified:

• username:
MySQL username for read or write access

• password:
password corresponding to the MySQL username for read or write access

5



The options and sections defined in the linssirc-template file are reserved words. It is
allowed to add own sections and options to .linssirc and they can be reserved globally by an
announcement to Linssi Administrative Body. All programs and scripts reading .linssirc

shall ignore the options they do not recognize.

There is a Perl function package in the Linssi script distribution for interpreting the .linssirc
files, named linssiConfig.pm. It is used by current Perl scripts and also recommended for
any new scripts.a

2.3 Documentation of Linssi Scripts

The script descriptions in Ch. 3–7 of this document have been made semi-automatically by
the collectInfo script included in the Linssi package. This is possible when the script
authors have obeyed a commenting practice developed at STUK/ASL. In this practice, all
scripts are started with a documentation block behind double comment signs (e.g., ## in
Perl scripts), utilizing fixed XML-type tags for different features of the scripts. This practice
is recommended to all Linssi script authors and it is in fact enforced on any new scripts to
be added to the official distribution.

The following documentation items are defined as compulsory for each script by the Linssi

Administrative Body (LAB):

1. Name of the script followed by space-hyphen-space and the purpose of the script in
max. 80 characters. This line must be before all tagged information in the documen-
tation block.

2. Author(s) of the script within tags <author>...</author>.

3. Original creation date of the script within tags <created>...</created>.

4. Package that the script belongs to within tags <package>...</package>. The current
default package is “Linssi core (v.2.3)”.

5. Version number of the script within tags <version>...</version>. The current prac-
tice is to use three numbers for scripts: the first two are the Linssi database schema
version and the third one the actual version number of the script. Example: 2.3.13
means the 13th released version of a script for Linssi v.2.3. The actual version
number of the script shall be upgraded when any modifications are made
in the script and released.

When appropriate, the following additional tags can be used:

– <bugs>...</bugs>:
known bugs or deficiencies

– <configuration>...</configuration>:
configuration files and their contents used

– <description>...</description> (alias <module>...</module>):
detailed documentation of the script functionality

aSome scripts originally from Linssi v.1.1 may use the Perl function package linssiGetoptStd.pm. The

package is available in the v.1.1 script release but not in v.2.3.
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– <functionList>...</functionList> (alias <subroutine>...</subroutine>):
list of functions or subroutines included in the file

– <modules>...</modules> (alias <uses>...</uses>):
list of external modules used by the script

– <options>...</options>:
documentation of the options supported by the script

– <parameters>...</parameters> (alias <param>...</param>):
documentation of parameters needed by the script

– <readsTables>...</readsTables>:
list of Linssi tables read by the script

– <requires>...</requires>:
external modules required by the script

– <return>...</return>:
return value of the script

– <synopsis>...</synopsis>:
synopsis of the script

– <syntax>...</syntax>:
script/module call syntax

– <updated>...</updated>:
date of an update; may also include a description of the update and the author

– <writesTables>...</writesTables>:
list of Linssi tables written by the script

The current Linssi scripts can be used as a model for documentation.
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Chapter 3

Database Management

The most basic database scripts are the management scripts to create the database, to list
its table contents, and to delete data related with a given sample, measurement, or analysis.
These scripts are presented in this chapter and their usage is illustrated in App. A.

In Linssi v.1.1 there are two maintenance scripts, checkdb and fixdb [3, Ch. 3]. These scripts
have not been upgraded to v.2.3, since the default database engine has been changed to
InnoDB, while the named scripts are needed for MyISAM only. If running Linssi v.2.3 on
the MyISAM database engine, it is recommended to upgrade the maintenance scripts from
v.1.1 to v.2.3.

Some scripts refer to ODBC that is clarified in Ref. [7].

3.1 maketables

Purpose: Creates tables in Linssi database

Version: 2.3.1

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 15.7.2003

Updated: 30.11.2004
Documentation updated.
9.12.2004
Table specification changed to v.1.1. (b.4.7)
21.12.2004
Some bugfixes
19.10.2005
version 1.1.1: ODBC support added. New version numbering. Uses
linssiConfig.pm and supports configuration files. -g
-option added. Supports empty strings as password (of course you shouldn’t
do this with your write user, but if you want to leave gaping security holes
why should we stop you).
24.5.2006
CTBT specific tables modified -tos
5.7.2006 JAH : Documentation
Linssi 2.0
28.1.2009 AKu : Fixed ActionSites table definition
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13.1.2010
Pertti Aarnio: Linssi2.2 table definitions
3.2.2010
til : linssiInfo-table
3.3.2010
x-ape : Updated version number to 2.2 in documentation
bug-fix DBI::errstr -> $DBI::errstr
2.7.2010 JAH : Documentation
11.3.2011
Samu Ristkari : mobileCoordinates PRIMARY KEY is now idPosition.
mobileCoordinates and measurements are connected via
relation measurementCoordinates(idPosition, idMeas).
14.4.2011 Samu Ristkari : missionId VARCHAR(20) =>missionId VARCHAR(80)
22.8.2011 til :
SRS-table:
date=> dateId
Primary Key: facilityId=>facilityId, dateId
samples table:
sampleProductionTable lenght varchar(20)=>varchar(80)
20.12.2011 til
Updated version number to 2.3 in documentation
2.8.2012 JAH : Corrected version number in linssiInfo- table

Description: This script automatically creates tables for Linssi database. The table specifi-
cations are according to the database definition 2.3.
The script uses database name, username and password given as arguments. If
database name, username, password and/or odbc-parameter are not given, the
values in configuration file will be used (username and password are those of
write-user). Note that you need to have the linssiConfig.pm file either in one of
the perl library directories or in the the same directory as this script or add ’use
lib ”linssiConfigPath”’ at the beginning of file. If the name of configuration file
is not given, the default file ($ENV{HOME}/.linssirc) is used.
If a table with the same name already exists in database the script continues
with next table. The script does NOT check if the existing table contains the
same fields that the script is trying to create.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: maketables [-d database_name] [-u username] [-p password] [-g configFile]

[-i databaseId] [-odbc|-noodbc]

Options: -g configFile Use configFile as configuration file. If database name,

username, password and/or odbc-option are not given, the values

read from configFile instead (see linssiConfig.pm for details).

If this option is not given, $ENV{HOME}/.linssirc is used as

configuration file.

- databaseId writes databaseId into linssiInfo-table.
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-odbc Use ODBC instead of DBI’s internal MySQL drivers. In that case

DSN is used instead of database name (see ODBC documentation).

-noodbc Use DBI’s internal MySQL drivers instead of ODBC. If neither

odbc nor noodbc is given, the value in configuration file is

used. If there there is no odbc paramater in configuration file

internal MySQL drivers are used.

Modules: linssiConfig.pm v.1.1.1 or newer

3.2 fillfunctions

Purpose: Fills in function codes and names into functions table

Version: 2.3.0

Author: Jarmo Ala-Heikkila

Package: Linssi core (v.2.3)

Created: 5.6.2008

Updated: 11.9.2008 JAH
12.3.2010 JAH: Documentation
20.12.2011 til
Updated version number to 2.3 in documentation

Description: This script fills in function codes (idFunction) and names (functionNameId), as
specified in Linssi v.2.3 manual, into functions table. This is necessary, because
the idFunction field is referred to from many other tables (foreign key).
The Perl code before the first insert-command was copied verbatim from the
maketables script by Antero Kuusi. The insert-commands could actually be
integrated into maketables.

Syntax: fillfunctions [-d database_name] [-u username] [-p password] [-g config-

File]

[-odbc|-noodbc]

3.3 desctables

Purpose: Shows descriptions of all tables in a Linssi database

Version: 2.3.0

Author: Jarmo Ala-Heikkila

Package: Linssi core (v.2.3)

Created: 5.6.2008

Updated: 12.3.2010 JAH: Documentation
20.12.2011 til
Updated version number to 2.3 in documentation
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Description: This script shows descriptions of all tables in a Linssi database. It is invoked
from Unix command line using the given syntax. The MySQL username (def.
webbi) shall be one for reading without a password. The configuration file
˜/.my.cnf shall not exist.
The script is portable across Linssi v.1.1 and v.2.3.

Syntax: desctables [-d database] [-u username]

Reads tables: none

Writes tables: none

Modules: none

3.4 listtables

Purpose: List tables in a Linssi database instance

Version: 2.3.0

Author: Andreas Pelikan

Package: Linssi core (v.2.3)

Created: 29.6.2009

Updated: 06.04.2010 AP
added option –fields
2.7.2010 JAH: Documentation
20.12.2011 til
Updated version number to 2.3 in documentation

Description: Create a listing of tables in a Linssi database.
The listing is intended to make it easier to find out if the table structure of a
particular database conforms to a certain Linssi version.
It provides similar functionality as desctables, but makes comparison easier.
Pipe the output to a file and use ’diff’ to see differences between two output
files.
Two types of listings are supported: a full listing (fields), and a short listing
(tables).
The full (field) listing lists all database fields in the format Table.Field:Type:Default:Null:Key:Extra
with the following elements: Table - the database table name Field - the field
name Type - the field’s data type Default - the default value Null - YES for fields
that may be NULL, empty else Key - one of PRI(mary); MUL(ti), UNI(que),
or empty Extra - extra info, such as auto increment The option –fields can be
used to change the order of the last 5 fields, or to include only some of them.
The short (table) listing contains lines of the format table fieldcount with the
following elements: table - the database table name fieldcount - the number of
fields in the table
Both reports contain a summary line: xx tables, yy fields

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [read]
username, [read] password

Syntax: listtables [-d database_name] [-u username] [-p password] [-g configFile]

[- odbc|-noodbc] [-s] [-fields fieldList]
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Options: -u username Connect to database as user ’username’. Default is read from

[read] section of configFile.

-p password Password to be used in database connection. Default is read

from

[read] section of configFile.

-g configFile Use configFile as configuration file. If database name,

username, password and/or odbc-option are not given, the values

read from configFile instead (see linssiConfig.pm for details).

If this option is not given, $ENV{HOME}/.linssirc is used as

configuration file.

-odbc Use ODBC instead of DBI’s internal MySQL drivers. In that case

DSN is used instead of database name (see ODBC documentation).

-noodbc Use DBI’s internal MySQL drivers instead of ODBC. If neither

odbc nor noodbc is given, the value in configuration file is

used. If there there is no odbc paramater in configuration file

internal MySQL drivers are used.

-s Create short output, listing only tables.

-fields list

In the long report, only include the fields given in the

comma separated list. Default is Type,Default,Null,Key,Extra ;

The records always start with table and field name.

Modules: linssiConfig.pm v.1.1.1 or newer

3.5 deleteSample

Purpose: Deletes a sample and all associated data from Linssi

Version: 2.3.0

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 21.7.2010 (for v.2.2)

Updated: 20.12.2011 til
Updated version number to 2.3 in documentation

Description: Script for deleting a sample and all associated data from Linssi database v.2.3.
The database name and username and password can be given as arguments for
the script. If you wish to use no password give an empty string as password (-p
’’).
If username, database name, password or odbc-parameter are not given the
values in the configuration file are used instead (username and password are
those of write-user). See below for more details. Note that you need to have
the linssiConfig.pm file either in one of the perl library directories or in the the
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same directory as this script or add ’use lib ”linssiConfigPath”’ at the beginning
of file. If -g -option is not given, the default file ($ENV{HOME}/.linssirc) is
used.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: deleteSample -s sampleId [-d database_name] [-u username] [-p password]

[-g optionFile] [-odbc|-noodbc]

Writes tables: samples, calibrationSamples, calibrationNuclides, airFilterSamples, basicSam-
ples, ctbtLabSamples, airFilterSOH, sampleTransports, sampleTrackings, sources,
measurements, spectra, alphaMeasurements, analyses, analysisBlocks, spectrum-
Components, componentsUsed, peaks, lineAssociations, activities, activityLim-
its, nuclideRatios, rois, finalResults

Modules: linssiConfig.pm v.1.1.1 or newer

3.6 deleteMeas

Purpose: Deletes a measurement and all associated data from Linssi

Version: 2.3.0

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 21.7.2010 (for version 2.2)

Updated: 20.12.2011 til
Updated version number to 2.3 in documentation

Description: Script for deleting a measurement and all associated data from Linssi database
v.2.3.
The database name and username and password can be given as arguments for
the script. If you wish to use no password give an empty string as password (-p
’’).
If username, database name, password or odbc-parameter are not given the
values in the configuration file are used instead (username and password are
those of write-user). See below for more details. Note that you need to have
the linssiConfig.pm file either in one of the perl library directories or in the the
same directory as this script or add ’use lib ”linssiConfigPath”’ at the beginning
of file. If -g -option is not given, the default file ($ENV{HOME}/.linssirc) is
used.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: deleteSample -m measId [-d database_name] [-u username] [-p password]

[-g optionFile] [-odbc|-noodbc]

Writes tables: measurements, spectra, alphaMeasurements, analyses, analysisBlocks, spec-
trumComponents, componentsUsed, peaks, lineAssociations, activities, activ-
ityLimits, nuclideRatios, rois, finalResults

Modules: linssiConfig.pm v.1.1.1 or newer
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3.7 deleteAnalysis

Purpose: Deletes an analysis and all associated data from Linssi

Version: 2.3.0

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 21.7.2010 (for version 2.2)

Updated: 20.12.2011 til
Updated version number to 2.3 in documentation

Description: Script for deleting an analysis and all associated data from Linssi database
v.2.3.
The database name, username and password can be given as arguments for the
script. If you wish to use no password give empty string for password (-p ’’).
If username, database name, password or odbc-parameter are not given the
values in the configuration file are used instead (username and password are
those of write-user). See below for more details. Note that you need to have
the linssiConfig.pm file either in one of the perl library directories or in the the
same directory as this script or add ’use lib ”linssiConfigPath”’ at the beginning
of file. If -g -option is not given, the default file ($ENV{HOME}/.linssirc) is
used.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: deleteSample -a analysisId [-d database_name] [-u username] [-p password]

[-g optionFile] [-odbc|-noodbc]

Writes tables: analyses, calsUsed, analysisBlocks, spectrumComponents, componentsUsed,
peaks, lineAssociations, activities, activityLimits, nuclideRatios, rois, finalRe-
sults

Modules: linssiConfig.pm v.1.1.1 or newer
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Chapter 4

Database Communication Using LML

A major upgrade in Linssi v.2.3, in contrast to v.1.1, is the introduction of an XML schema
called Linssi Markup Language or LML for database communication. All data import into
and export from Linssi is recommended to be done using LML, although some support exists
for the AKu format used in v.1.1 (see [3, Ch. 14]) for backward compatibility.

According to the readme.txt file included in the script package, the XML-schema of LML
is defined using the following files:

lml.xsd Master-level file, contains the definition of the root node. All other files contain
only blocks used by this file, start reading here.

general.xsd Contains definitions for blocks that describe parameters that are typically non-
changing, such as specification of detectors. These blocks go directly under the main
LML-node. Also contains definitions for some simple fields that are used by all of the
other files.

sample.xsd Contains characterisation sample or other object being measured. In field
conditions this could also mean specification of the location being measured. These
blocks go under the main LML-node.

measurement.xsd Contains the actual measurement result (spectra or dose rate) and in-
formation about the measurement (such as measurement time). These blocks go inside
the sample block, meaning that at least the basic indentifying information described
in sample.xsd must be filled to use these blocks.

analysis.xsd Contains the actual analysis result (for example found peaks, nuclide informa-
tion) and information about analysis (such as parameters used and methods). These
blocks go inside the measurement block, meaning that at least the basic information
described in measurement.xsd must be filled to use these blocks.

calibration.xsd Contains calibrations. As calibrations can be associated with one of several
situations (such as default calibration for a given measurement setup or calibration used
with a given analysis), these blocks go directly under the main LML-node. Other parts
of the file then refer to these calibrations by their ID.

The LML schema does not need to be documented in more detail, since it has a
one-to-one correspondence with the database schema defined in Linssi manual
Part I [1]. LML examples are presented in Ch. 11.
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Using LML, the data entry points 0 . . . 3 defined in Linssi manual Part I [1, Ch. 1] need not
to be separated on the script side. The scripts defined in this chapter can be used for all
data import and export.

4.1 lmltodb

Purpose: Script for reading analysis and other data in LML format into Linssi database

Version: 2.3.1

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 4.9.2007

Updated: 30.10.2007
Updated to match table specification 2.0b5.9. Main difference is support for
spectrumComponents, rois, and roiRatios inside both measurementData and
analysisData.
27.11.2007
Updated to match table specification 2.0b5.10.
11.12.2007
Version 2.0.0.1: Added handling of analysisBlobs.
13.12.2007
Version 2.0.0.2: Fixed the handling of roi- subtables (roiLimits,
roiComponents, and roiRatios).
29.2.2008
Version 2.0.0.3: Enchanced the handling of boolean fields, true/false now
understood in addition to 1/0.
28.3.2008
Version 2.0.0.4: Fixed handiling of analysisBlocks when it appears more than
once in a file.
1.4.2008
Version 2.0.0.5: Expanded error message information.
6.6.2008
Version 2.0.0.6: Removed potential double definition of *IdAnalysis-fields
in Analysis-table.
6.6.2008
Version 2.0.0.7: Fixed behavior when user inputs an empty element. Script no
longer inputs anything to calibration-related tables if user enters calId
that already exists. Changed output of -i option to reflect this.
11.6.2008
Version 2.0.0.8: Added a check to guarantee that the completionTime in
finalResults table will be written even if there is no finalResults block
in the input file.
4.7.2008
Version 2.0.0.9: Improved the handling of calsRecommended blocks.
25.9.2008
Version 2.0.0.10: Removed idSample insertion into alphaMeasurements table
(the table doesn’t have such a field).
17.10.2008
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Version 2.0.0.11: Corrected argument binding for updated values on duplicate
key in table calsRecommended.
19.1.2009
Version 2.0.0.12: Added support for actionSites table.
23.1.2009
Version 2.0.0.13: Added support for SMACK (externalKeys table).
19.3.2009
Version 2.0.0.14: Added -a option.
26.6.2009 AP
Version 2.1.0.1: added options -h and –(no)keychecks; fixed bugs;
changed version to 2.1
26.11.2009 AKu
Version 2.1.0.2: Modified the behavior of -o option to work more realiably
(no more ”ghost entries”)
9.12.2009
Version 2.1.0.3: Added -q option
2.3.2010
Version 2.2.0.0: Updated to Linssi 2.2 tables specification.
2.7.2010 JAH: Documentation
20.12.2011 til
Updated version number to 2.3 in documentation
2.8.2012 JAH: Documentation

Description: Script for reading LML files into Linssi database. Data is read from stdin un-
less -f -option is used. The LML format is specifed in lml.xsd file and refers
to components defined in sample.xsd, measurement.xsd, analysis.xsd, calibra-
tion.xsd and general.xsd.
The script assumes that the input file is well-formed and follows the LML
schema. Well-formedness of input file may be checked during parsing using
the -v -option. However this option does NOT check if the file follows the LML
schema.
The database name and username and password can be given as arguments for
the script. If you wish to use no password give empty string as password (-p ’’).
If username, database name, password or odbc- parameter are not given, the
values in the configuration file are used instead (username and password are
those of write-user). See below for more details. Note that you need to have the
linssiConfig.pm file either in one of the perl library directories or in the the same
directory as this script, or add ’use lib ”linssiConfigPath”’ at the beginning of
file. If -g -option is not given, the default file ($ENV{HOME}/.linssirc) is used.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: lmltodb [-f reportfile] [-d database_name/DSN] [-u username] [-p pass-

word]

[- g configFile] [-i] [-c] [-o] [-q] [-r] [-a] [-s] [-v] [-h]

[-odbc|-noodbc] [-keychecks|-nokeychecks]

Options:

-f Data is read from a given file. If this option is not given, the
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report is read from stdin.

-i Script reports assigned idAnalysis and idCal. The ids are report

in the tree travelsal order which is the order the entries appear

in the file practically every time.

-g configFile Use configFile as configuration file. If database name,

username, password and/or odbc-option are not given, the values

read from configFile instead (see linssiConfig.pm for details).

If this option is not given, $ENV{HOME}/.linssirc is used as

configuration file.

-odbc Use ODBC instead of DBI’s internal MySQL drivers. In that case

DSN is used instead of database name (see ODBC documentation).

-noodbc Use DBI’s internal MySQL drivers instead of ODBC. If neither

odbc nor noodbc is given, the value in configuration file is

used. If there there is no odbc paramater in configuration file

internal MySQL drivers are used.

-keychecks Tell the database engine to perform foreign key checks. This

is useful to guarantee that the lml file contains all referenced

data, or the referenced data were loaded earlier.

-nokeychecks Tell the database engine not to perform foreign key checks.

This is the default behaviour.

-c If database contains data with the same sampleId, data in

samples table is compared with the data in file.

Fields that have NULL in file or database are ignored. If some of

the compared fields do not match, the script is aborted with

error message. Useful for checking consistency of data when it is

input piecemeal. (NOTE: Not currently implemented).

-o If database contains data with the same sampleId, data in

samples with the same sampleId/measurementId/analysisId is overwritten.

Useful when file contains newer or more accurate information

than in database.

NOTE: Requires MySQL v.4.1.0 or newer.

-q Same as -o option, but for tables inside generalData block.

-r Same as -o -option, but for calsRecommended table.

-a Same as -o -option, but applies only for those tables that are

in analysisTables block except for analyses and calsUsed.

-s If database contains data with the same sampleId

the input is aborted. Useful when combining data from two
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different sources that may have assigned the same

sampleId/measurementId for different samples/measurements.

-v Check well-formedness of the input during parsing.

-h Show a usage (help) message and exit.

Modules: linssiConfig.pm v.1.1.1 or newer, DBI package, GetOpt package, XML::LibXML
package

4.2 dbtolml

Purpose: Generates LML file from Linssi database

Version: 2.3.1

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 25.9.2007 (for v.2.0)

Updated: 12.12.2007
Updated to match table specification 2.0b5.10
13.2.2008
Version 2.0.0.1. Fixed behavior of calsRecommended table.
28.3.2008
Version 2.0.0.2. Multiple analysisBlocks entries for one analysis now supported.
23.4.2008
Version 2.0.0.3. Corrected the name of the attribute in calsUsed block
(was calIndex, should be calId).
19.5.2008 AP
Version 2.0.0.4 corrected database error variable name $DBI::errstr,
suppressing empty alphaMeasurements record.
25.9.2008
Version 2.0.0.5: Corrected the sources and calsRecommended blocks to match
the schema. Improved facility-table handling with the -l option.
23.1.2009
Version 2.0.0.6: Added support for SMACK (externalKeys table). Added -e and
-n options.
19.2.2009
Version 2.0.0.7: -m -option now prints the applicable calibration entries
(earlier only the -a -option did so).
16.4.2009
Version 2.0.0.8: -x -option now added, use with extreme caution.
1.7.2009 AP
Version 2.1.0.9 relocated sources, documented actual version (2.1)
linssiConfig field name changes.
2.3.2010
Version 2.2.0.0: Updated to Linssi 2.2 (no material changes).
2.7.2010 JAH: Documentation
20.12.2011 til
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Updated version number to 2.3 in documentation
2.8.2012 JAH: Documentation

Description: Script for generating LML files from Linssi database. These files can be read
into another database using lmltodb.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [write]
username, [write] password

Syntax: dbtolml [-d database_name] [-u username] [-p password] [-f filename]

[-dl label] [-l] [-g configFile] -s|-m|-mn|-a|-an|-af [-n|-e]

-is <sampleId>|- im <measId>|-ia <analysisId>|-x [-odbc|-noodbc]

Options: -d databaseName Name of the database that contains the information.

If not given the name in the configuration file will be

used.

-u username Username to be used. User need to have select rights to

the database. If not given the ’read’ username in

configuration file will be used.

-p password Password for the user. If not given the ’read’ password in

configuration file will be used.

-f filename Output filename. If not given ’lml.xml’ is used.

-g configFile Use configFile as configuration file. If database name,

username, password and/or odbc-option are not given, the

values read from configFile instead (see linssiConfig.pm

for details). If this option is not given,

$ENV{HOME}/.linssirc is used as configuration file.

-dl databaseLabel Defines database label that is used to add to comments

section in tables. This option is not mandatory but

strongly recommended.

-l Write out also information to generalData block that is related

to sample and measurement(s). Writes the information from stations,

samplers, detectors and sources tables. NOTE: Those entries from

sources table that belong to sampleData-block (=those referred in

samples-table) are written out even without this switch.

-is sampleId Generate file for any samples/measurements/analyses

that have given sampleId.

-im measId Generate file for any samples/measurements/analyses

that have given measId.

-ia analysisID Generate file for any samples/measurements/analyses

that have given analysisId.
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-x Generate file for the whole contents of the database.

WARNING! This parses everything in the database to one XML file.

If you try this with a sizeable database, you will overload your

database engine, hard drive, and memory. Unless you know otherwise,

assume that using this will cause your server to crash, burn, and

explode.

-s Write out data in sample tables for matching data. Sample tables

are tables in sampleData block.

-m Write out data in sample tables (as with -s) and measurement

tables. Measurement tables are tables in measurementData block

and possibly in calibrationData block.

-mn As with -m -option but if more that one measurement matches

given id, print only the newest one.

-a Write out data in sample tables, measurement tables (as with -m)

and analysis table. Analysis tables are those in analysis and

calibration blocks.

-an As with -a -option but if more that one measurement and/or analysis

matches given id, print only the newest one.

-af As with -a -option but print only those analysis that are marked

as ’final’ in finalResults.analysisStatus.

-odbc Use ODBC instead of DBI’s internal MySQL drivers. In that case

DSN is used instead of database name (see ODBC documentation).

-noodbc Use DBI’s internal MySQL drivers instead of ODBC. If neither

odbc nor noodbc is given, the value in configuration file is

used. If there there is no odbc paramater in configuration file

internal MySQL drivers are used.

-n Do not generate externalKeys data even if the linssiInfo table

exists (if the table does not exist, that data is never

generated).

-e If the externalKeys data is generated, add all applicable data

from the existing externalKeys table to it.

Reads tables: samples, sampleSplitsCombines, sampleTransports, sampleTrackings, basic-
Samples, ctbtLabSamples, airFilterSamples, calibrationSamples, sources, air-
FilterSOH, calibrationNuclides, messages, measurements, alphaMeasurements,
analyses, calsUsed, spectrumComponents, componentsUsed, peaks, lineAssocia-
tions, activities, activityLimits, nuclideRatios, rois, roiRatios, finalResults, cal-
ibrations, calTypes, calPoints, facilities, samplers, detectors, measurementSe-
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tups, sources, calsRecommended

Modules: linssiConfig.pm v.1.1.1 or newer, DBI package, GetOpt package, XML::LibXML
package

4.3 akutolml

Purpose: Converts AKu format written by USS to LML format

Version: 2.3.0

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 2.5.2008

Updated: 11.6.2008
Version 2.0.0.1: Fixes behavior of measurementSetups table.
19.6.2008 JAH
Version 2.0.0.2: Adds detectors table with detectorId that is foreign
key in measurementSetups table.
17.3.2010 JAH
Version 2.2.1: Upgraded to Linssi v.2.2 (relatively small additions
in tables analysisBlocks, measurements, samples and spectra).
2.7.2010 JAH: Documentation
20.12.2011 til
Updated version number to 2.3 in documentation

Description: Script for converting analysis results in AKu format (block-based text format
output by USS at least) to LML format (XML-like format).

Syntax: akutolml <inputFile> [<outputFile>]

Modules: XML::LibXML package
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Chapter 5

Calibration and Spectrum
Management

Calibration management typically belongs to the basic tasks under LinssiWorld. The scripts
presented in this chapter are linked to it. Additionally, support for the PHD spectrum file
format defined by the CTBTO [6] and other spectrum formats is available using the scripts
presented in this chapter.

5.1 calibrations.php

Purpose: Tool for viewing calibrations

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005

Updated: 20.6.2006 : calPoints are converted to double values before
creating the graph (this created problems in some installations of
PHP/JpGraph) - tos
5.7.2006 JAH : Documentation
Linssi 2.0 - tos
2.7.2010 JAH: Documentation
20.12.2011 - til
Updated version number to 2.3 in documentation

Description: Tool for viewing calibrations. Shows general information (comments, creation
time etc.), calDataPairs and line graph images of calibrations. This script can
also be used to edit/add comments in calibrations and to set calibration as a
default in the measurementSetup.

Reads tables: measurementSetups, calibrations, calsRecommended, calsUsed, calTypes, cal-
Points, analyses

Writes tables: measurementSetups, calibrations

Modules: JpGraph, linssiConfig.php, htmlTags.php, linssiPHPLib.php, linssiFormTools.php
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5.2 addCalibration.php

Purpose: Add a new calibration set to Linssi database

Version: 2.3.1

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005

Updated: 12.5.2006 : Removed the requirement that x values must be
higher than y values - tos
5.7.2006 JAH : Documentation
Linssi 2.0 - tos
2.7.2010 JAH: Documentation
20.12.2011 - til
Updated version number to 2.3 in documentation
2.8.2012 JAH: Version number corrected

Description: This script can be used to add a new calibration set to Linssi database. Cali-
bration can also be imported from LML file.

Reads tables: calibrations

Writes tables: calibrations, calTypes, calPoints

Modules: linssiConfig.php, linssiPHPLib.php, linssiFormTools.php, htmlTags.php

5.3 dbtophd

Purpose: Creates PHD file of given measurement from Linssi database

Version: 2.3.0

Author: Andreas Pelikan

Package: Linssi core (v.2.3)

Created: 3.6.2004

Updated: 30.8. 2004
Added -c -option.
31.8.2004
Added -e -option
30.11.2004
Linssi v.1.01 to v.1.1 upgrade
Dropped -e option (always used)
14.03.2005 AP
Reading defaults from config file (˜/.linssirc)
23.11.2005 AP
Version 1.1.3b
DataType and SystemType decided by samples.sampleType
Option -i idCal added
21.02.2006 AP
Version 1.1.3b2
Bug Fixes: airVolume for split samples, background MID, spacing
23.02.2006 AP
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Version 1.1.3b4
g TotalEfficiency to TotalEff, Linssi:sourceId from measurements.sourceId,
GasBackgroundMID (0) added. -f option bug solved.
5.7.2006 JAH : Documentation
3.3.2008 JAH : Option dbname in configFile changed to databaseName

3.3.2008 AJM : Converted the macro to work with Linssi2.0 dbase
1.1.2010 AJM
Converted the macro to work with Linssi2.2 dbase. Preliminary version,
correct execution of all options not guaranteed
2.7.2010 JAH: Documentation
20.12.2011 til
Updated version number to 2.3 in documentation

Description: This script creates PHD file from information in Linssi database. The table
specifications are according to the database definition 2.3.
The script uses database name, username and password given as arguments. If
database name or username are not given, they are read from configuration file
(˜/.linssirc).
The PHD file is not probably exactly as the one used to create the data in
database. This depends completely on the input system used.

Syntax: dbtophd [-d databaseName] [-u username] [-p password] -f outfile

-m measId|-h phdMeasName [-i idCal] [-C configFile] [-c]

Options: -d databaseName Name of the database that contains the information.

If not given the name in the beginning of the script is used.

-u username Username to be used. User need to have select rights to

the database. If not given the name in the beginning of the

script is used.

-p password Password for the user. If not given the one in user’s

.linssirc will be used.

-f outfile Filename for the output file.

-m measId MeasId of the measurement.

-h phdMeasName PhdMeasName of the measurement.

-i idCal idCal of the calibration set to be reported, default is

idCal in measurementSetups table.

-C configFile Read configuration from configFile instead of default

config file ~/.linssirc.

-c Add sampleId, measId, stationId, measSetupId, idMeas,

idCal and sampleType to #Comments block.

25



5.4 dbtocalblocks

Purpose: Outputs given calibration from Linssi database in PHD-format

Version: 2.3.1

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 6.6.2008

Updated: 19.6.2008 JAH
Version 2.0.0.1: Added option -v to output idCal, added a check for
missing -i and -m options, changed from write to read username,
fixed documentation.
12.3.2010 JAH: Documentation
2.7.2010 JAH: Documentation
20.12.2011 til
Updated version number to 2.3 in documentation
2.8.2012 JAH: Small change to allow for incomplete
calibration sets, e.g., efficiency calibration only

Description: Script for generating files containing calibration of given ID or the default
calibration for one measurement setup. Output file format is the same as the
one used in PHD-spectrum files for calibrations.

Configuration: Script supports the following options of .linssirc: databaseName, odbc, [read]
username, [read] password

Syntax: dbtocalblocks [-d database_name] [-u username] [-p password]

[-g configFile] -i <idCal>|-m <measSetupId> -o <calModelId>

[-f filename] [-v] [-odbc|- noodbc]

Options: -d databaseName Name of the database that contains the information.

If not given the name in the configuration file will be

used.

-u username Username to be used. User need to have select rights to

the database. If not given the ’read’ username in

configuration file will be used.

-p password Password for the user. If not given the ’read’ password in

configuration file will be used.

-g configFile Use configFile as configuration file. If database name,

username, password and/or odbc-option are not given, the

values read from configFile instead (see linssiConfig.pm

for details). If this option is not given,

$ENV{HOME}/.linssirc is used as configuration file.

-i idCal Writes out the calibration with given idCal. Only one

of -i and -m can be given.

-m measSetupId Writes out the default calibration for
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measurement setup measSetupId and calibration model

calModelId (given with option -o). Only one

of -i and -m can be given.

-o calModelId The calibration model in measurement setup measSetupId

(given with option - m).

-f filename Writes the output to given file. If this option

is not given the output is written to STDOUT.

-v Output idCal (useful with option -m).

-odbc Use ODBC instead of DBI’s internal MySQL drivers. In that case

DSN is used instead of database name (see ODBC documentation).

-noodbc Use DBI’s internal MySQL drivers instead of ODBC. If neither

odbc nor noodbc is given, the value in configuration file is

used. If there there is no odbc paramater in configuration file

inter MySQL drivers are used.

Reads tables: measurementSetups, calibrations, calPoints

Modules: linssiConfig.pm v.1.1.1 or newer Perl libraries DBI and GetOpt

5.5 lmlSpecConv

Purpose: Converts a spectrum in LML-file to another format

Version: 2.3.0

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 15.9.2009

Updated: 2.7.2010 JAH: Documentation
20.12.2011 til
Updated version number to 2.3 in documentation

Description: Script for converting a spectrum in LML-file to another format. The following
formats are currently recognized (as both input and output format):

• newline (Separator between counts is newline - default separator)

• whitespace (Separator between counts is whitespace)

• symbol (Any character but not 0,1,...,9 may be a separator)

• phdFormat (The spectrum is a combination of newline and whitespace sep-
arated formats, see PHD-specification. Conversion function not yet imple-
mented)

• zipBase64 (Zipped spectrum, separator may be any character. Conversion
function not yet implemented)
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• perlPacked (Packed with Perl’s pack function, separator is whitespace.
Conversion function not yet implemented)

• countedZeros (See in ANSI42.42. Conversion function not yet implemented)

Syntax: lmlSpecConv -i <inputFile> -f <outFormat> [-o <outputFile>]

Options: -i <inputFile> Name of the file being converted.

-f <outFormat> Format of output spectrum. See spectrumConverter package

for defined spectrum types.

-o <outputFile> Name for output file. If no output file is specified,

the input file will be overwritten.

Modules: GetOpt package XML::LibXML package spectrumConverter package
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Chapter 6

Reporting and Displaying

The most essential reporting and graphical display scripts linked to LinssiWorld are pre-
sented in this chapter. A full list of PHP scripts in the distribution package is given in
Ch. 7.

6.1 analysisReport.php

Purpose: Prints analysis reports

Version: 2.3.1

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.10.2005

Updated: Added link to showCorrFactors.php - tos
4.5.2006 : If sampleProductionTable is ctbtLabSamples and
stationSplitAirVolume is set, use that instead of airVolumeTotal - tos
8.5.2006 : list of other measurements from the same sample can
be set off from linssiconfig.php - tos
12.5.2006 : fixed a bug related to activities and ctbtLab
samples - tos
20.6.2006 - changed the hard coded port 80 to
$ SERVER[’SERVER PORT’] in sendToHost function -tos
5.7.2006 JAH : Documentation
7.8.2006 : If there is no analyses found with the given parameters
and idMeas parameter is given, a measurement report is printed - tos
8.2.2007 : Printing of peaks and line associations moved to
separate scripts; peaks.php and lineAssociations.php - tos
21.2.2007 : added link to createLml.php -tos
Linssi 2.0 - tos
2.7.2010 JAH: Documentation
5.8.2010 JAH: function printOrganization() upgraded,
associationCount corrected, explainCount added
20.12.2011 - til
Updated version number to 2.3 in documentation
2.8.2012 JAH: Documentation
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Description: Prints analysis reports (short or long). It’s also possible to get the reports in
PDF format (modified HTML2FPDF library must be installed on the server).
Parameters can be idAnalysis OR idMeas and software OR idSample and soft-
ware OR idMeas OR idSample. In cases when there is more than one analysis
matching the parameters, the one with final status (or with the highest idAnal-
ysis) is printed. Links in the report toolbar can be removed by changing the
settings in the linssiConfig.php configuration file.

Reads tables: analyses, finalResults, activities, peaks, lineAssociations, measurements, sam-
ples, airfilterSamples, ctbtLabSamples, stations, measurementSetups, sources,
calPreferences, calibrations, activityLimits

Modules: linssiConfig.php, linssiPHPLib.php, htmlTags.php, HTML2FPDF, showSpec-
trum.php, spectrumPart.php, peakGraph.php, editAnalysis.php, createEurdep.php,
createPhd.php, createLml.php, showCorrFactors.php

6.2 editAnalysis.php

Purpose: Script for manual editing of analysis results

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005

Updated: 4.5.2006 - If sampleProductionTable is ctbtLabSamples and
stationSplitAirVolume is set, use that instead of airVolumeTotal - tos
5.7.2006 JAH : Documentation
21.9.2007 : Automatic creation of XML messages to Lims (configured
in linssiConfig.php) - tos
Linssi 2.0 - tos
2.7.2010 JAH: Documentation
20.12.2011 - til
Updated version number to 2.3 in documentation

Description: Script for manual editing of analysis results. This script can be used to change
the calculation method for activity concentrations, change analysis status or to
create a new manual analysis from existing one by deleting some nuclides.

Reads tables: analyses, peaks, lineAssociations, activities, activityLimits, nuclideRatios, fi-
nalResults, calPreferences, analysisBlocks, componentsUsed, samples

Writes tables: analyses, peaks, lineAssociations, activities, activityLimits, nuclideRatios, fi-
nalResults, calPreferences, analysisBlocks, componentsUsed

Modules: linssiConfig.php, linssiPHPLib.php, linssiFormTools.php, htmlTags.php

6.3 latestResults.php

Purpose: Creates and shows newest results of every facility in Linssi

Version: 2.3.1

Author: Antero Kuusi

30



Package: Linssi core (v.2.3)

Created: 25.7.2003

Updated: 14.6.2004
13.1.2005
11.9.2005/AI Original perl-script sar update new.cgi
was converted to php and renamed as latest results.php
1.6.2006/AI Script was renamed as latestResults.php and
phd output was changed to analysisReport
11.6.2007/RR Anomalous nuclides and old spectra are
now printed in different colors.
27.8.2007/MMo Accepts also preliminary analysisStatus in addition to
NULL. This is required for NG Aatami analysis.
03.12.2007/MMo Ordering changed so that laboratories show last
19.9.2008/MMo Several modifications for Linssi 2.0 adaptation
30.9.2009/MMo Case insensitive search for anomalous nuclides
2.7.2010 JAH: Documentation
2.8.2012 JAH: Documentation

Description: This script creates and shows newest results of every station in Linssi database
version 2.3. Color coding is used to point the user’s attention to anomalous
cases.

6.4 sampleReport.php

Purpose: Creates sampling reports in html and excel format

Version: 2.3.1

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.10.2005

Updated: Added acqStart, acqEnd, completionTime and dbEntryTime to the
report - tos
5.7.2006 JAH : Documentation
Moved mdc sign ”<” to it’s own column in excel report and
added a possibility to select any nuclides - tos
Linssi 2.0 - tos
2.7.2010 JAH: Documentation
20.12.2011 - til
Updated version number to 2.3 in documentation
2.8.2012 JAH: Documentation

Description: This script creates sampling reports in html and excel format (PEAR::OLE
and PEAR::SpreadsheetExcelWriter packages must be installed on the server to
get the reports in excel format).

Reads tables: stations, samples, airFilterSamples, ctbtLabSamples, measurements, finalRe-
sults, activities, activityLimits activityLimits

Modules: linssiConfig.php, htmlTags.php, linssiPHPLib.php, linssiFormTools.php, PEAR::OLE,
PEAR::SpreadsheetExcelWriter
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6.5 showSamples.php

Purpose: Print the samples or measurements from chosen facilities

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.10.2005

Updated: Status backgroundcolor now changes if anomalous nuclides were
detected in the final analysis. - tos
Added status explanations - tos
Added ”samples without status” count - tos
Changed the order of the software in the list - tos
Added ”include background measurements”-option - tos
5.7.2006 JAH : Documentation
Fields that are shown can be set from linssiConfig.php + some
other modifications - tos
Added a possibility to add a sampler selection from
linssiConfig.php - tos
Linssi 2.0 - tos
2.7.2010 JAH: Documentation
20.12.2011 - til
Updated version number to 2.3 in documentation

Description: This script prints the samples or measurements from the chosen stations in the
chosen time interval. Samples / measurements are printed in a table and in the
end of each row is printed a software selection form with all the software that
has produced an analysis from the corresponding sample / measurement. The
form is used as a link to the analysis results (analysisReport.php).
Status field indicates if there is a final, preliminary or invalid analysis from the
corresponding sample / measurement or if anomalies have been found in the
final analysis.
Samples that have not been measured can be included in the results by checking
the corresponding checkbox.
Data sanity check option checks if any of the channels of the spectra in the result
set has a value less than zero.Only the first spectrum in each measurement is
checked (idSpectrum = 1).
There are some options in linssiConfig.php configuration file that affect the be-
haviour of this script. For example some of the fields that are shown for each
sample / measurement can be configured. Also, station, sampler, sample type
and sample production table selections can be switched on and off.

Reads tables: samples, measurements, measurementSetups, spectra, finalResults, analyses

Modules: linssiConfig.php, htmlTags.php, linssiFormTools.php, linssiPHPLib.php, anoma-
lousNuclides.php

6.6 showSpectrum.php

Purpose: Prints a line graph image of a spectrum with nuclide identifications
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Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005

Updated: Don’t fetch nuclides if their energy is null - tos
8.6.2006 : two for loops optimized - tos
5.7.2006 JAH : Documentation
21.7.2006 : Script extended to handle the printing of multiple
spectra given their idMeas numbers + some other modifications - tos
Linssi 2.0 - tos
2.7.2010 JAH: Documentation
20.12.2011 - til
Updated version number to 2.3 in documentation

Description: This script prints line graph image of spectrum given the idAnalysis or idMeas
number. If idAnalysis is given, the nuclide identifications are also printed if they
are found from the database. If one or more idMeas parameters are given, the
script creates a line graph for each spectra with different color. HTML-page also
includes a javaScript function which is used to zoom into the certain part of the
spectrum (zoomSpectrum.php required).

Reads tables: samples, measurements, analyses, calsUsed

Modules: JpGraph, linssiConfig.php, linssiPHPLib.php

6.7 zoomSpectrum.php

Purpose: Zoom feature for showSpectum.php

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005

Updated: modified energy shifts functionality - tos
To improve speed, script modified to handle only those channels
which are inside the zoomed area - Sakari Ihantola
Fixed a bug which occurred if register globals setting in PHP was
on - Tommi Salonen & Sakari Ihantola
5.7.2006 JAH : Documentation
21.7.2006 : Extended to handle the zooming into a graph with
multiple spectra - tos
Linssi 2.0 - tos
2.7.2010 JAH: Documentation
6.8.2010 JAH: Introduced parameter showStrippedSpectrum
20.12.2011 - til
Updated version number to 2.3 in documentation

Description: A zoom feature for showSpectum.php. A 100 keV wide portion of the graph is
shown in a separate browser window, together with strippedSpectrum, baseline,
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fitted peak and nuclide identifications (if available). User can select either linear
or logarithmic vertical scale. Further zooming in/out and scrolling are also
implemented.

Modules: JpGraph, linssiConfig.php
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Chapter 7

Linssi Script Reference List

This chapter presents the list of Linssi scripts in the distribution package as of August 2012.
Many of these scripts were presented in more detail in the previous chapters, but there are
a number of scripts that are listed only here. The categorization of scripts differs slightly
from the previous chapters.

New scripts are probably added to the distribution more frequently than this document
is updated. An up-to-date list of the scripts will be maintained on the Linssi home page
http://linssi.hut.fi/.

7.1 Configuration Scripts and Libraries

linssirc-template

Purpose: Template for the configuration file .linssirc

Version: 2.3.1

Author: Andreas Pelikan

Package: Linssi core (v.2.3)

Created: 7.3.2005

linssiConfig.pm

Purpose: Package for handling Linssi configuration files

Version: 2.3.1

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 10.10.2005

linssiConfig.php

Purpose: Linssi PHP scripts configuration file

Version: 2.3.1

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.10.2005
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linssiFormTools.php

Purpose: Functions for printing forms element and getting selected parameters

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

linssiPHPLib.php

Purpose: PHP functions

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.10.2005

htmlTags.php

Purpose: Perl CGI-like library, with functions that generate html tags

Version: 2.3.1

Author: Andreas Pelikan

Package: Linssi core (v.2.3)

Created: 27.1.2006

7.2 Database Creation Scripts

maketables

Purpose: Creates tables in Linssi database

Version: 2.3.1

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 15.7.2003

fillfunctions

Purpose: Fills in function codes and names into functions table

Version: 2.3.0

Author: Jarmo Ala-Heikkila

Package: Linssi core (v.2.3)

Created: 5.6.2008
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desctables

Purpose: Shows descriptions of all tables in a Linssi database

Version: 2.3.0

Author: Jarmo Ala-Heikkila

Package: Linssi core (v.2.3)

Created: 5.6.2008

listtables

Purpose: List tables in a Linssi database instance

Version: 2.3.0

Author: Andreas Pelikan

Package: Linssi core (v.2.3)

Created: 29.6.2009

linssiFacilities.php

Purpose: Populates the facilities-table in Linssi v.2.3

Version: 2.3.2

Author: Ryan Lawrie

Package: Linssi core (v.2.3)

Created: October 20, 2011

alterTableNames

Purpose: Changes table names case sensitive

Version: 2.3.0

Author: til

Package: Linssi core (v.2.3)

Created: 15.6.2011

linssi22to23

Purpose: Script for converting Linssi 2.2 database to 2.3

Version: 2.3.0

Author: Antero Kuusi

Package: Linssi (v.2.3)

Created: 16.1.2011
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7.3 Basic Housekeeping Scripts

deleteSample

Purpose: Deletes a sample and all associated data from Linssi

Version: 2.3.0

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 21.7.2010 (for v.2.2)

deleteMeas

Purpose: Deletes a measurement and all associated data from Linssi

Version: 2.3.0

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 21.7.2010 (for version 2.2)

deleteAnalysis

Purpose: Deletes an analysis and all associated data from Linssi

Version: 2.3.0

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 21.7.2010 (for version 2.2)

7.4 Basic Database Input Scripts

lmltodb

Purpose: Script for reading analysis and other data in LML format into Linssi database

Version: 2.3.1

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 4.9.2007

akutolml

Purpose: Converts AKu format written by USS to LML format

Version: 2.3.0

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 2.5.2008
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7.5 Data Extraction Scripts

dbtolml

Purpose: Generates LML file from Linssi database

Version: 2.3.1

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 25.9.2007 (for v.2.0)

dbtophd

Purpose: Creates PHD file of given measurement from Linssi database

Version: 2.3.0

Author: Andreas Pelikan

Package: Linssi core (v.2.3)

Created: 3.6.2004

dbtocalblocks

Purpose: Outputs given calibration from Linssi database in PHD-format

Version: 2.3.1

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 6.6.2008

lmlSpecConv

Purpose: Converts a spectrum in LML-file to another format

Version: 2.3.0

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 15.9.2009

spectrumConverter.pm

Purpose: Library for converting spectrum in LML-file to another format

Version: 2.3.0

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 15.9.2009
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7.6 Scripts for Handling Calibrations

calibrations.php

Purpose: Tool for viewing calibrations

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005

addCalibration.php

Purpose: Add a new calibration set to Linssi database

Version: 2.3.1

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005

7.7 Scripts for Interactive Data Browsing, Analysis,

and Report Generation

addComments.php

Purpose: A tool to add comments to data

Version: 2.3.0

Author: NN

Package: Linssi core (v.2.3)

Created: 1.1.2010

addMeasurementSetup.php

Purpose: Add a new measurementSetup to Linssi database

Version: 2.3.0

Author: NN

Package: Linssi core (v.2.3)

Created: 1.1.2010

analysisReport.php

Purpose: Prints analysis reports

Version: 2.3.1

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.10.2005
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analysisResultsKML.php

Purpose: View the latest analysis results in Google Earth

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 8.6.2007

anomalies.php

Purpose: Prints a report that shows all detected anomalous nuclides

Version: 2.3.1

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005

anomalousNuclides.php

Purpose: Defines an array that contains all anomalous nuclides

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.10.2005

changeDb.php

Purpose: Print a database selection form

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005

createLml.php

Purpose: Creates LML file from the chosen analysis

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 21.2.2006

createPhd.php

Purpose: Creates a PHD file from the chosen analysis

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.3.2006
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editAnalysis.php

Purpose: Script for manual editing of analysis results

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005

latestResults.php

Purpose: Creates and shows newest results of every facility in Linssi

Version: 2.3.1

Author: Antero Kuusi

Package: Linssi core (v.2.3)

Created: 25.7.2003

lineAssociations.php

Purpose: Prints the lineAssociations from the chosen analysis

Version: 2.3.1

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 8.2.2007

peakGraph.php

Purpose: Shows the chosen peak as a line graph image

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005

peaks.php

Purpose: Prints the peaks from the chosen analysis

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 8.2.2007

qc.php

Purpose: Shows the resolution for certain nuclides for QC purposes

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005
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ratioCalculus.php

Purpose: Count ratios of Pu and U nuclides in the chosen analysis

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 4.1.2008

sampleReport.php

Purpose: Creates sampling reports in html and excel format

Version: 2.3.1

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.10.2005

selectTimes.php

Purpose: Prints form fields for time selection

Version: 2.3.0

Author: NN

Package: Linssi core (v.2.3)

Created: 1.1.2010

showActionSites.php

Purpose: Prints rows from actionSites table for given idSample or idMeas

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 8.5.2009

showCorrFactors.php

Purpose: Shows correction factors and raw activities for nuclides

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 2.3.2006

showDetectors.php

Purpose: Shows the detectors in the database

Version: 2.3.0

Author: Teemu Siiskonen, Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.5.2006
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showFacilities.php

Purpose: Shows the facilities in the database

Version: 2.3.0

Author: Teemu Siiskonen, Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.5.2006

showMeasurementSetups.php

Purpose: Shows the measurementSetups in the database

Version: 2.3.0

Author: Teemu Siiskonen, Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.5.2006

showSampleInfo.php

Purpose: Prints sample info

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 16.11.2007

showSamplers.php

Purpose: Shows the samplers in the database

Version: 2.3.0

Author: Teemu Siiskonen, Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.5.2006

showSamples.php

Purpose: Print the samples or measurements from chosen facilities

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.10.2005

showSources.php

Purpose: Shows the sources in the database

Version: 2.3.0

Author: Teemu Siiskonen, Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.5.2006
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showSpectrum.php

Purpose: Prints a line graph image of a spectrum with nuclide identifications

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005

spectrumPart.php

Purpose: Creates a linegraph image of a certain part of a spectrum

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005

trendsImage.php

Purpose: Outputs image for trends.php

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 23.11.2007

trends.php

Purpose: Creates a line graph image showing activity concentrations

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005

zoomSpectrum.php

Purpose: Zoom feature for showSpectum.php

Version: 2.3.0

Author: Tommi Salonen

Package: Linssi core (v.2.3)

Created: 1.6.2005
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Chapter 8

Interface between Linssi and Analysis
Software

This chapter starts the second topic of this manual, i.e., interfacing Linssi with analysis
software. The UniSampo–Shaman software package can be understood as an illustrating
example, but this chapter also serves as a documentation of the functional UniSampo-Sha-
man-Linssi-system at STUK, Health Canada, and other organizations.

8.1 Linssi with UniSampo–Shaman

The connection between UniSampo–Shaman (USS) and the Linssi database is based on
temporary result files and scripts that import the file contents to database. The database
support has been built on the file-based USS-system, so everything else in the analysis
package works as without Linssi [5].

The operation of the UniSampo–Shaman system is mainly handled by a basic analysis
script called shaman_run. It takes care of the settings required by the analysis software
packages UniSampo and Shaman prior to calling them. The management of database
insertion is also controlled by shaman_run.a

The shaman_run script supports three basic operational modes: a pipeline mode, a non-
pipeline batch mode and an interactive mode. The support for storing data to Linssi is
available in all three modes. In each operational mode, shaman_run calls the binaries Uni-

Sampo and Shaman in due order and thus generates the temporary database reports .uda
and .udb from UniSampo and .sdb from Shaman. Whether or not these files are processed
to the database depends on the configuration (pipeline mode) or user actions (batch and
interactive mode).

It should be noted that even though the shaman_run script supports analysis of several file
formats (phd, asc, ids, mac, xml), database insertion is currently possible only for phd-
files.b This is because the other formats do not support the essential keys required by Linssi

(Ch. 9). Generating unique and compatible database keys is the key issue when interfacing

aThis means that if UniSampo or Shaman is invoked any other way than by shaman_run, their results

cannot be stored to Linssi. There may also be problems with the database connection if the spectrum is

acquired using UniSampo’s MCA connection, i.e., not given to it as input.
bIf shaman_run is invoked with an asc, ids or mac-file that was previously created during phd-file

analysis, the results can be stored in database. However, this is not possible for asc, ids or mac-files created

any other way.
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Figure 8.1: Flow chart of the UniSampo–Shaman pipeline with Linssi.

analysis software with Linssi.

If the database insertion scripts are invoked in any operational mode of shaman_run, this
is done in the foreground. If the database is blocked, this will also interrupt the analysis
progress. Database insertion in the background would solve this problem and it was exper-
imented with earlier versions of Linssi. However, it is impossible to make correct database
links between UniSampo and Shaman results in that operational mode, so it had to be
abandoned. This means that any database jams need to be resolved promptly, making usage
of alarming scripts necessary.
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8.1.1 Database Insertion in the Pipeline Mode

The UniSampo–Shaman analysis pipeline is illustrated in Fig. 8.1. It is operated by the
mailchk script that polls a dedicated mailbox at constant intervals. All mail messages are
given to the script aanalyze script that investigates their contents. If an incoming mail
message contains a spectrum, aanalyze calls the shaman_run script that makes the initial
settings and then calls UniSampo and Shaman in due order.

The USS-pipeline saves analysis results under the directory /home/shaman/dbroot (or sim-
ilar) in the reporting formats produced by UniSampo and Shaman. The different reports
can be distinguished by their filename extensions that are presented in Fig. 8.1. The reports
include temporary database reports with extensions .uda, .udb and .sdb that are inserted to
the database with the scripts ustodb and shtodb. Their functionality is explained on p. 52.

Storing of analysis results to a Linssi database can be turned on by setting the variable
linssidb=y in Shaman’s configuration file shaman.config. Additionally, the pipeline script
checks that the scripts for database insertion ustodb and shtodb are available.

Indirectly, a successful database connection also requires the file ~/.linssirc, since it is
consulted by the lmltodb script in the Linssi package that is used by ustodb and shtodb.
The usernames and passwords in ~/.linssirc must naturally be valid. If there are several
databases available, there should be a separate ~/.linssirc* file for each of them. The USS
system utilizes environmental variables LINSSIRC_READ and LINSSIRC_WRITE for selecting
the configuration file for the input and output database, respectively.

Data for all spectra processed by the pipeline are stored in the database by
default if database name and username have been defined. However, spectra can
be excluded from the database on the basis of spectrum type (FULL, PREL, BLNK, BACK,

CALI, QCSP, XXXX), sampling station (e.g., XXX00) and detector (e.g., XXX00-001). The
exclusion rules are configured in the shaman.config file.

Note that these exclusion rules are only applied in pipeline operation. In other
operational modes full control is given to the user, provided that he/she has permissions for
database updating.

8.1.2 Database Insertion in the Batch Mode

Non-pipeline batch mode means that shaman_run is invoked from the Unix prompt with the
-b option. The graphical user interfaces of UniSampo and Shaman are not displayed in
this mode. The mode is very similar to the pipeline mode, but there are some differences.
The difference in storing of analysis results in the database is that in the batch
mode, this is done only when the command line option -l is used, whereas in
the pipeline mode all results are stored in the database by default. Furthermore,
the exclusion rules that are applied in the pipeline mode are not applied in the batch mode.

Note that the database username and password need to be defined in the configuration
file ~/.linssirc of the user running the shaman_run script. The environment variables
LINSSIRC_READ and LINSSIRC_WRITE can be used to select the input and output database
configuration file, respectively.

8.1.3 Database Insertion in the Interactive Mode

In the full interactive mode with graphical user interfaces, analysis results from
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UniSampo and Shaman are not stored in the database by default, but only on
user’s request.

In UniSampo’s case, the user is prompted for storing its final results in database upon
exiting. Additionally, UniSampo’s intermediate analysis results can be stored to database
upon selecting the command “Store Analysis Results to Linssi” available in the Macro-menu.
Please note that it is the user’s responsibilty to ensure that the calibrations and analysis
results are consistent upon storing.

In Shaman’s case, there are no intermediate results, only final results. They are stored to
database upon pressing the “Store to Database”-button that is available in the standard but-
ton window of Shaman if a database has been configured. The button opens a confirmation
dialogue prior to invoking the database storing script.

Note that the database username and password need to be defined in the configuration
file ~/.linssirc of the user running the shaman_run script. The environment variables
LINSSIRC_READ and LINSSIRC_WRITE can be used to select the input and output database
configuration file, respectively.

8.2 Generation of Database Keys and Identifiers

Since analysis software packages run on entry point 3 of Linssi (see Linssi manual Part I [1]),
they require knowledge of some essential database keys as an input in order to provide
consistent output to Linssi. The adopted method to define these essential database keys
listed in Ch. 9, and some additional string identifiers of Linssi, is to utilize the #Comment

block of the PHD-spectrum as explained in Ch. 10.

The keys and identifiers that are not input using this method are generated by the shaman_run
script during runtime. The script extracts them from the other blocks of the PHD-spectrum
as described below. In this process, it is essential that the spectrum conforms to the
PHD-format definition by the CTBTO [6]. The blocks that are utilized are #Header,
#Collection and #Acquisition.

a. sampleId c

– sampling station (site), samsta, from the second line of #Header block

– sampling start date, samstartdate, and time, samstarttime, from the second line
of #Collection block

– if the source is not sampled, take acquisition start date and time from the
second line of #Acquisition block

– split symbol is the characters 13–14 of the phdSampleName (SRID) in #Header

block

– if the source is not sampled, splitsymbol=00

– sequential integer, seqint, is generated from sampling start date: it is the 3-digit
day of year 001 . . . 366

– if the source is not sampled, seqint=000

cPlease note that the sampleId generated from standard PHD fields, like presented here, does not conform

to the definition of Ch. 9. This is because the components sampler code and filter type are not defined in

the PHD format.
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sampleid=${samsta}_${samstartdate}_${samstarttime}_${splitsymbol}_${seqint}

b. measId

– MID, phdmid, from the fourth line of #Header block

– live aqcuisition time, livetime, from the second line of #Acquisition block

measid=${phdmid}_${livetime}

c. extSampleName

– if this key is not given in #Comment block, its value is null.

d. extMeasName

– if this key is not given in #Comment block, its value is null.

e. stationId

– sampling station (site), samsta, from the second line of #Header block

stationid=${samsta}

f. samplerId

– sampling station (site), samsta, from the second line of #Header block

samplerid=${samsta}

g. sourceId

– if this key is not given in #Comment block, its value is null.

h. detectorId

– detector code consisting of measuring station and detector, measta and meadet,
from the second line of #Header block

detectorid = ${measta}${meadet}

i. measSetupId

– detector code consisting of measuring station and detector, measta and meadet,
from the second line of #Header block

– measuring geometry, measgeom, from the second line of #Header block

meassetupid = ${detectorid}_${measgeom}
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j. blankIdMeas

– if this key is not given in #Comment block, its value is null.

k. backgroundIdMeas

– if this key is not given in #Comment block, its value is null.

l. blankIdAnalysis

– if this key is not given in #Comment block, its value is null.

m. backgroundIdAnalysis

– if this key is not given in #Comment block, its value is null.

n. inputIdAnalysis

– if this key is not given in #Comment block, its value is null.

o. inputIdCal

– if this key is not given in #Comment block, its value is null.

p. calibrations.class

– if this key is not given in #Comment block, its value is null.

q. measurementSetups.idCal

– if this key is not given in #Comment block, its value is null.

r. combined

– if this key is not given in #Comment block, its value is 0.

s. sampleType

The line DATA_TYPE specifying the PHD-spectrum type and the system type (P/B/G)
on the second line of the #Header block are mapped to the following sampleType’s:

– spectrum type SAMPLEPHD and system type B or G ⇒ gassample

– spectrum type GASBKPHD and system type B or G ⇒ gasbackground

– spectrum type DETBKPHD and system type P ⇒ background

– spectrum type BLANKPHD and system type P ⇒ blank

– spectrum type CALIBPHD and system type P ⇒ calibration

– spectrum type QCPHD and system type P ⇒ qcspectrum

– spectrum type SAMPLEPHD and system type P ⇒ airfilter or environmental

depending on the command line option given to shaman_run (-a or -e correspond-
ingly)

51



This list needs to be updated when support for new sample types is added to Linssi

and the analysis software.

t. sourceDensity d

– if this parameter is not given in #Comment block, its value is null.

u. sourceThickness d

– if this parameter is not given in #Comment block, its value is null.

v. barcode

– if this parameter is not given in #Comment block, its value is MID, phdmid, from
the fourth line of #Header block

8.2.1 Technical Implementation

shaman_run is a Bourne shell script where the different keys are defined as variables. These
variables are input to UniSampo’s and Shaman’s database reports similarly in principle,
but the technical implementation differs slightly:

1. UniSampo generates preliminary database reports (.uda, .udb) where database fields
containing strings irrelevant for the analysis are presented as placeholders separated
by two at-characters, e.g., @sampleId@. These placeholders are replaced afterwards by
the ustodb script using the Unix sed-command and the shell script variables. This
is because the RGL report generator of UniSampo does not support command line
arguments.

2. Shaman generates directly the final database report (.sdb), i.e., including correct
values also for the database fields irrelevant for the analysis. This is because the
RGL report generator of Shaman supports command line arguments that are written
verbatim to the correct places in the database report.

An additional complication arises from the need to output the calibration data pairs input
to UniSampo, in addition to those that were possibly updated by it during processing.
This is implemented so that the same RGL report is produced by UniSampo with origi-
nal calibrations (.uda) and with updated calibrations (.udb). The tables calibrations,
calTypes, calPoints and calsUsed are extracted from the .uda file, their idCal, calId
and usedInAnalysis fields are modified and finally appended to the .udb file. Then the
placeholder replacement described above takes place.

The ustodb script also extracts the #Certificate-block from the PHD-file, if available, and
inserts it into its proper place in the calTypes tables of the .uda report. In calTypes tables
of the .udb report, on the other hand, no certificate information is available, since they are
usually internal calibrations.

The UniSampo and Shaman reports are converted to the LML format (see Ch. 4) with the
akutolml script prior to calling the lmltodb script.

dThe source parameters are included on the list, because they may be used by Shaman for self-absorption

correction. For this purpose, they must be accompanied by a setting of calibrations.class to SOURCE.
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8.3 Tables Updated by UniSampo and Shaman

The following tables are updated by UniSampo (U) and Shaman (S):

airFilterSamples U S

calibrationSamples U S

samples U S

measurementSetups U S

measurements U S

spectra U S

------------------------------

calibrations U

calTypes U

calPoints U

calsUsed U S

analyses U S

analysisBlocks U S

peaks U S

lineAssociations S

activities U S

activityLimits U S

nuclideRatios S

The last 11 tables are clearly analysis results from USS. Every new analysis is given a unique
idAnalysis/analysisId and saved in the database as such. The possibilities for manual
modification of USS-results in the database should be kept at minimum for traceability
reasons. Of course, the results may be later removed from the database if they are grossly
erroneous and if this is the practice of the organization. Some organizations may keep all
analysis results in the database for the record and only flag the grossly erroneous results
in the comments field of each table, for example. The practice should be decided by the
organization itself and an administration script should be written for removing or flagging
analysis result with a given idAnalysis/analysisId when found necessary.

The first 6 tables on the list mainly contain input for USS or fields that are not needed
by them. They are always output by USS, but they should be ignored in cases when the
sample has been collected or at least measured by the organization itself (entry points 0,
1 and 2 in Fig. 1.2 of the Linssi manual Part I [1]). In this case, the tables should contain
the correct information already prior to running UniSampo and Shaman, i.e., the software
packages cannot add any relevant information to these tables.

The first 6 tables are needed in cases when the organization receives a measured spectrum
from outside, e.g., a spectrum measured by the IMS network of the CTBTO (entry point
3 in Fig. 1.2 of the Linssi manual Part I [1]). In this case the sample and measurement
data are missing from the database prior to running UniSampo and Shaman. By using
the first 6 tables output by the USS, the essential information can be retrieved from the
PHD-spectrum to the database, possibly for manual completion later.
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Chapter 9

Adopted Syntax for Unique Keys

The database includes a number of unique keys. Some of these keys are auto-increment
integers that are maintained by the database itself. However, there are also some string
keys (type varchar) whose uniqueness must be assured by the user. This means that naming
practices need to be defined for these keys by the organization using Linssi.

The most essential keys in Linssi, and in radiation spectrometry in general, are the sample
and measurement identifiers, for which character strings are used in Linssi. The spectrum
file format that is understood by the UniSampo–Shaman package is the PHD-format de-
fined by the CTBTO. In connection with the definition of the PHD-format, the formats
for the sample and measurement identifiers (Sample Reference Identification, SRID, and
Measurement Identification, MID, in the CTBTO jargon) as well as their positions in the
PHD-file are defined in the document ”Formats and Protocols for Messages – Revision 6”
(IDC-3.4.1Rev6) [6].

However, the definitions in IDC-3.4.1Rev6 are quite limited and actually, the definition of
the MID fails to be unique: it only includes the acquisition start time that is identical if
spectra are measured in slices (N×PREL-measurements and a FULL-measurement without
acquisition restart in between). Another complication arises in the situation where a spec-
trum or a sample is given to analysis from an outside customer that has a different naming
practice than the analyzing organization.

In order to have degrees of freedom, there are four different fields for both the sample and
measurement identifier in Linssi:

sample: idSample (int), sampleId (varchar), phdSampleName (varchar), i.e., SRID, and
extSampleName (varchar) in table samples

measurement: idMeas (int), measId (varchar), phdMeasName (varchar), i.e., MID, and
extMeasName (varchar) in table measurements

In both cases, the integer key is made unique by the database itself and the uniqueness of
sampleId and measId must be secured by the user. The fields with prefix phd and ext are
not required but only recommended to be unique by the database specifications.

The current USS-implementation defines phdSampleName and phdMeasName to obey the
naming practices of IDC-3.4.1Rev6. The sampleId and measId fields use another definition
by the Finnish Radiation and Nuclear Safety Authority (STUK). These format definitions
are presented below.

New in Linssi v.2.3 in contrast to v.1.1, there is a character string key also for analysis named
analysisId in parallel with the integer key idAnalysis. Similarly, a character string key
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for calibration calId has been added in parallel with the integer key idCal. Their format
definitions are also presented below.

9.1 idSample

An auto-increment integer key managed by the database.

9.2 sampleId

The key sampleId is defined by STUK/ASL for a sampled source (with a collection start
time) as:

cccccccccc_yyyy/mm/dd_hh:mm:ss_Pp_xxx

cccccccccc station code + sampler code + filter type

yyyy/mm/dd collection start date

hh:mm:ss collection start time

Pp split identifier: P = split number, p = total nr of splits

xxx sequential integer

Example: HEP02CI01F_2004/02/17_08:04:00_11_18

For a source that is not sampled (blank, background, QC, calibration etc.), sampleId has
the same format but with the following field contents:

cccccccccc station code / detector code

yyyy/mm/dd acquisition start date

hh:mm:ss acquisition start time

Pp split identifier, always "00"

xxx sequential integer, always "000"

Example: FI001-D01_2004/02/05_10:05:03_00_000

Please note that a sampleId generated from standard PHD spectrum fields cannot conform
to this definition. This is because the components sampler code and filter type are not
defined in the PHD format. This definition can be applied only when specifying the keys in
the #Comment block like documented in Ch. 10.

9.3 phdSampleName

The key phdSampleName obeys the definition of SRID of the CTBTO:

1. In the case of air filters with pre-printed barcodes where the SRID format below is
impossible to follow, any unique SRID for every air filter will be considered valid.

2. The format of the SRID for filter samples is a 14 or 15-character code:
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ccyyyymmddhhPpT

cc CTBT station number (e.g., CKP23 -> 23)

yyyymmddhh collection start

Pp split identifier: P = split number, p = total nr of splits

T station type: G for noble gas, blank for particulate

Example: 23200305230711

3. The format of the SRID for other than filter samples is a 14 or 15-character code:

ccttttttttxxxxT

cc CTBT station or laboratory number

tttttttt sample type identifier:

00000000 blank filter identifier

11111111 detector background measurement identifier

77777777 special IMS sample identifier

88888888 check source identifier

99999999 calibration source identifier

xxxx a sequential number

T station type: G for noble gas, blank for particulate

Example: 35111111110006G

9.4 extSampleName

A freely settable character string, preferably unique.

9.5 idMeas

An auto-increment integer key managed by the database.

9.6 measId

The key measId is defined by STUK/ASL to be identical to phdMeasName, but the acquisition
live time is appended to make the key unique:

ccccc_ddd-yyyy/mm/dd-hh:mm:ss_aaaaaa

ccccc station code

ddd detector code

yyyy/mm/dd acquisition start date

hh:mm:ss acquisition start time

aaaaaa acquisition live time

Example: HEP02_D01-2004/02/19-08:25:00.0_81871.5
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9.7 phdMeasName

The key phdMeasName obeys the definition of MID by the CTBTO: the first nine characters
are the station+detector code, the tenth character is a dash, and the remaining characters
are the date and time of the acquisition start.

ccccc_ddd-yyyy/mm/dd-hh:mm:ss

ccccc station code

ddd detector code

yyyy/mm/dd acquisition start date

hh:mm:ss acquisition start time

Example: BRG11_001-2000/02/06-20:00:00

9.8 extMeasName

A freely settable character string, preferably unique.

9.9 idAnalysis

An auto-increment integer key managed by the database.

9.10 analysisId

The key analysisId is defined to be unique by using the software name, computer name
(hostname) and the timestamp of analysis start.

pppppppp@hhhhhhhh:yyyy/mm/dd-hh:mm:ss

pppppppp software name

hhhhhhhh computer hostname

yyyy/mm/dd analysis start date

hh:mm:ss analysis start time

Example: Shaman@localhost:2010/08/04-16:47:04

9.11 idCal

An auto-increment integer key managed by the database.

9.12 calId

The key calId is defined to be unique in two different manners:
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1. For calibrations included in a PHD-spectrum file, the calId is equal to phdMeasName

(MID of the CTBTO).

2. For calibrations updated during the analysis and stored to Linssi, the calId is equal
to analysisId.

Example 1: HEP02_FI001-D01_2004/12/13_08:12:00

Example 2: UniSampo@localhost:2010/08/04-16:47:04
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Chapter 10

PHD-File Format Extension

There are two ways to construct keys and identifiers for Linssi in entry point 3 — spectrum
analysis:

1. Write the keys to the #Comment block of a PHD-spectrum (see the Linssi core script
dbtophd). A PHD-spectrum modified in this way conforms to the PHD-spectrum
definition of the CTBTO [6]. The extensions are documented below.

2. Let the spectrum analysis script define the keys on the basis of the data in the PHD-
spectrum blocks #Header, #Collection, and #Acquisition (see Sec. 8.2).

The first alternative is recommended and it shall be given priority by the analysis system,
i.e., a key or identifier given in a #Comment block must not be changed by the analysis script.

The following keys and identifiers in the #Comment block are currently supported:

a. sampleId

b. measId

c. extSampleName

d. extMeasName

e. stationId

f. samplerId

g. sourceId

h. detectorId

i. measSetupId

j. blankIdMeas

k. backgroundIdMeas

l. blankIdAnalysis

m. backgroundIdAnalysis

n. inputIdAnalysis

o. inputIdCal

p. calibrations.class
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q. measurementSetups.idCal

r. combined

s. sampleType

t. sourceDensity a

u. sourceThickness a

v. barcode

For the definitions of the keys see the Linssi manual Part I [1]. It is important to note that
a PHD-spectrum that contains any of the integer database keys j.–o. is tied to one Linssi

implementation, i.e., the integer keys cannot be exported to another Linssi implementation.

The syntax for defining each of these keys/identifiers in the #Comment block is:

1. one key/identifier per line

2. the key/identifier name prefixed by “Linssi:” and no space

3. the key/identifier name followed by a space

4. the value for the key/identifier

Example: Linssi:calibrations.class SETUP

10.1 Example of an Extended PHD-File

Below we give an example of a PHD-file that contains Linssi extensions in the #Comment

block. The extensions are framed for clarity.

BEGIN RMS2.0

MSG_TYPE DATA

MSG_ID 00003662

DATA_TYPE SAMPLEPHD

#Header

HEP02 FI001-D01 P A9 FULL

HEP02CI01P_2004/12/30_08:02:00_11

HEP02_FI001-D01_2005/01/01_08:12:00.0 -FI001-D01-1999/07/02-08:24:00.0

2005/01/02 08:01:52.0

#Comment

Other comments

Linssi:sampleId HEP02CI01P_2004/12/30_08:02:00_11_203

Linssi:samplerId CI01

Linssi:stationId HEP02

Linssi:measId HEP02_FI001-D01_2005/01/01_08:12:00.0_79777

Still more comments

#Collection

2004/12/30 08:02:00.0 2004/12/31 08:01:00.0 13471

#Sample

9.80 0.15 9.00

#Acquisition

2005/01/01 08:12:00.0 85777 79777

#Energy

46.539001 137.893585 0.100000

77.108002 230.136398 0.100000

aThe source parameters are included on the list, because they may be used by Shaman for self-absorption

correction. For this purpose, they must be accompanied by a setting of calibrations.class to SOURCE.
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87.180000 260.206879 0.100000

238.632004 714.635803 0.100000

477.612000 1431.399048 0.100000

583.190979 1748.041992 0.100000

727.330017 2180.433105 0.100000

860.564026 2580.149902 0.100000

1093.900024 3280.095215 0.100000

1460.800049 4380.392578 0.100000

1764.494019 5291.525391 0.100000

2103.532959 6308.622070 0.100000

2614.532959 7841.349121 0.100000

#Resolution

185.873032 1.687073 0.162545

238.677277 1.599915 0.019327

277.402283 1.207947 0.196168

351.989990 2.054047 0.317100

477.615326 1.797760 0.026302

583.177673 1.962036 0.021768

609.345398 1.498779 0.159257

661.534546 1.668091 0.179939

727.351318 2.055054 0.054498

785.438232 1.761597 0.095406

860.608032 2.005737 0.091816

911.139832 2.023499 0.092679

968.791321 2.143982 0.184401

1093.880127 1.696411 0.274368

1120.146240 2.477661 0.159326

1460.686768 2.610596 0.389208

1620.982910 1.852783 0.491402

1764.506104 2.545166 0.358929

2103.510010 3.485352 0.099305

2614.471924 3.136230 0.063993

#Efficiency

5.000E+01 2.450E-02 1.225E-03

8.000E+01 9.350E-02 4.667E-03

9.000E+01 1.152E-01 5.833E-03

1.000E+02 1.325E-01 6.667E-03

1.100E+02 1.455E-01 7.333E-03

1.350E+02 1.645E-01 8.167E-03

1.500E+02 1.673E-01 8.333E-03

2.000E+02 1.597E-01 8.000E-03

3.000E+02 1.272E-01 6.333E-03

5.000E+02 8.833E-02 4.500E-03

7.000E+02 6.983E-02 3.500E-03

1.200E+03 4.783E-02 2.333E-03

2.000E+03 3.333E-02 1.667E-03

3.000E+03 2.517E-02 1.333E-03

3.600E+03 2.200E-02 1.167E-03

#Spectrum

8192 2700

0 0 0 0 0 0

5 0 0 0 0 0

10 0 0 0 0 0

15 0 0 0 0 0

20 0 0 0 0 0

25 0 0 0 0 0

30 0 0 0 0 0

35 0 0 0 0 0

40 0 0 0 0 0

45 0 0 0 0 2658

50 2298 1998 1758 1572 1467

...

8140 5 6 1 2 5

8145 4 1 2 3 1

8150 4 5 2 4 3

8155 2 4 3 4 1

8160 1 4 4 2 3

8165 5 5 3 1 4

8170 2 6 5 4 2

8175 4 8 3 2 3

8180 4 6 6 7 3

8185 1 2 3 2 3

8190 1 0 0 0 0

STOP
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Chapter 11

LML File Format for Database
Import and Export

The XML-type tagged format named Linssi Markup Language or LML is the recommended
file format for importing data to Linssi v.2.3. The scripts of Ch. 4 also support using it for
data export.

The LML schema is defined with the xsd-files presented on p. 15. The purpose of this chapter
is to give some hints for implementing LML in analysis software. We start with the simplest
possible LML-file that imports only a sampleId key to the samples table:

<?xml version="1.0"?>

<LML xmlns="http://www.stuk.fi/linssi" linssiVersion="2.3">

<sampleData>

<samples>

<sampleId>HEP02CI01F_2004/02/17_08:04:00_11_18</sampleId>

</samples>

</sampleData>

</LML>

During import with the lmltodb script, MySQL also generates the corresponding auto-
increment key idSample, but no other data are added to Linssi. If we name the LML-file as
test.lml and if the Linssi scripts reside in the directory /usr/local/gamma/linssi2, the
LML-file is imported to Linssi with the following two commands:

$ export PERL5LIB=${PERL5LIB}:/usr/local/gamma/linssi2

$ /usr/local/gamma/linssi2/lmltodb -f test.lml -g ~/.linssirc

Here we assume that database username and password are defined in the .linssirc file in
the user’s home directory (see p. 5).

Below we present more realistic LML-files. The fields have a one-to-one correspondence with
the Linssi database schema. The only complication is that the tables have been grouped
to sampleData, measurementData, analysisData, calibrationData, generalData, and
otherData. The Linssi tables that belong to each group have been listed in the xsd-files defin-
ing the LML schema. The analysisData group is hierarchically below the measurementData
group that in turn is below the sampleData group, as can be seen in the example below.
The last group is meant for communicating additional information to other programs, not
for importing data into Linssi.

What is the minimum set of information that can be imported to Linssi using
LML? The answer is relatively simple:
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1. If any sample-related data is imported, the samples table data with at least the
sampleId needs to be included in the LML-file. (See the example above.)

2. If any measurement-related data is imported, the samples table data with at least
the sampleId and the measurements table data with at least the measId need to be
included in the LML-file.

3. If any analysis-related data is imported, the samples table data with at least the
sampleId, the measurements table data with at least the measId and the analyses

table data with at least the analysisId need to be included in the LML-file.

4. If any calibration-related data is imported, the calibrations table data with at least
the calibrationId needs to be included in the LML-file.

5. In each Linssi table there is a primary key, sometimes consisting of various components.
The primary key component(s) must be defined in the LML-file, if anything is to be
stored in the corresponding table in Linssi. However, if auto-increment integer keys
like idSample, idMeas, idAnalysis and idCal are components of the primary key,
they are not to be written in the LML-file.

11.1 Examples of an LML-File

The following kind of an LML file is used to initialize a new detector in Linssi. Note that
the facility information must be included (at least the facilityId key) and the default
measurement setup.

<?xml version="1.0"?>

<LML xmlns="http://www.stuk.fi/linssi" linssiVersion="2.3">

<generalData>

<facilities>

<facilityId>stuk-zorro-01</facilityId>

<facilityName>PikkuMusta-01</facilityName>

<isMobile>1</isMobile>

<organization>stuk</organization>

<facilityType>backpack</facilityType>

<isSampling>0</isSampling>

<isMeasuring>1</isMeasuring>

</facilities>

<detectors>

<detectorId>g-nai-5x4-55109</detectorId>

<biasVoltage>670</biasVoltage>

<diameter>127</diameter>

<thickness>102</thickness>

<detectorType>g-nai-5x4</detectorType>

<detectorModel>55109</detectorModel>

<facilityId>stuk-zorro-01</facilityId>

</detectors>

<sources>

<sourceId>stuk-zorro-01-mobile</sourceId>

<sourceGeometry>pointSource-unshielded</sourceGeometry>

</sources>

<measurementSetups>

<measSetupId>stuk-zorro-01-g-nai-55109-3200</measSetupId>

<detectorId>g-nai-5x4-55109</detectorId>

<sourceId>stuk-zorro-01-mobile</sourceId>

<sampleDistx>5000</sampleDistx>

</measurementSetups>

</generalData>

</LML>
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The following kind of an LML file is used to store measurements in Linssi. Note that the
pointers to the corresponding sample and calibration data must be included in the LML.

<?xml version="1.0"?>

<LML xmlns="http://www.stuk.fi/linssi" linssiVersion="2.3">

<sampleData>

<samples>

<comments>Original idSample : 24</comments>

<dbLastUpdate>2010-08-24 13:47:50</dbLastUpdate>

<sampleId>STUK-RanidPro200-1-INSITU</sampleId>

<facilityId>STUK-RanidPro200-1</facilityId>

</samples>

<measurementData>

<measurements calId="LaBr_38x38_Q690_INSITU">

<comments>Original idMeas :1523</comments>

<acqRealTime>32.019775</acqRealTime>

<measId>LaBr_38x38_Q690_1282741237941</measId>

<acqEnd>2010-08-25 13:00:37</acqEnd>

<measSetupId>STUK-RanidPro200-1_LaBr_38x38_Q690_INSITU</measSetupId>

<acqStart>2010-08-25 13:00:05</acqStart>

<acqStartNanoSeconds>652000000</acqStartNanoSeconds>

<acqLiveTime>31.900146</acqLiveTime>

<facilityId>STUK-RanidPro200-1</facilityId>

</measurements>

<spectra>

<spectrum>0

0 0 0 0 0 0 0 0 0 0 0 19 32 49 48 72 117 207 2.3.055 89 56 44 38 54 69 56 76 74 63 64 87 88 80 77 86 97 126

141 91 120 97 95 111 114 116 121 116 86 105 100 85 102 84 74 83 86 90 104 92 75 73 72 81 76 106 101 79 86 78

75 91 83 83 82 84 75 77 74 77 72 75 81 76 64 54 77 60 76 52 55 61 68 62 49 72 65 56 68 54 49 61 55 55 61 68

...

2 1 1 2 1 1 0 1 0 0 2 1 2 1 3 1 2 0 1 0 2 3 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 0 1 2 1 1 0 0 1 1 0 2 0 1 0

2 2 1 0 2 2 1 1 0 0 0 2 0 0 0 1 1 2 0 1 0 1 2 1 0 2 2 0 0 2 0 0 0 1 1 0 0 1 2 1 1 1 0 0 1 1 0 1 1 2 0 2 0 2

0 0 2 0 0 1 2 1 0 1 0 0 1 0 0 1 0 0 3 0 1 2 3 0 0 0 4 2 0 0 1 0 2 0 0 0 2 2 1 0 0 0 0 0</spectrum>

<spectrumFormat>symbol</spectrumFormat>

<spectrumType>SUM</spectrumType>

<lastChannel>1023</lastChannel>

<idSpectrum>1</idSpectrum>

<firstChannel>0</firstChannel>

<firstValidChannel>0</firstValidChannel>

<lastValidChannel>1023</lastValidChannel>

</spectra>

</measurementData>

</sampleData>

<calibrationData>

<calibrations>

<calId>LaBr_38x38_Q690_INSITU</calId>

<comments>Copied from another database, original idCal 5 .

</comments>

<measSetupId>fi.stuk.RANID-200-1_LaBr_38x38_Q690_INSITU</measSetupId>

</calibrations>

<calTypes>

<creationTime>0000-00-00 00:00:00</creationTime>

<calTypeId>energy</calTypeId>

<parameters>2.0 0.01

1.89 0.01

8.7407E-5 0.01

7.5587E-9 0.01

</parameters>

<idFunction>2</idFunction>

</calTypes>

<calTypes>

<creationTime>0000-00-00 00:00:00</creationTime>

<calTypeId>resolution</calTypeId>

<parameters>38.8115 0.01

0.3819 0.01

7.599E-5 0.01

</parameters>

<idFunction>4</idFunction>

</calTypes>

<calsRecommended>

<calModelId>aatamiV1</calModelId>

<measSetupId>STUK-RanidPro200-1_LaBr_38x38_Q690_INSITU</measSetupId>

</calsRecommended>
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</calibrationData>

<generalData>

<measurementSetups>

<detectorId>LaBr_38x38_Q690</detectorId>

<comments>Copy of measurementSetup.

</comments>

<measSetupId>STUK-RanidPro200-1_LaBr_38x38_Q690_INSITU</measSetupId>

</measurementSetups>

</generalData>

<otherData>

<externalKeys>

<keyType>sample</keyType>

<keyId>STUK-RanidPro200-1-INSITU</keyId>

<idKey>24</idKey>

<databaseId>snitch22@kemi.stuk.fi</databaseId>

</externalKeys>

<externalKeys>

<keyType>meas</keyType>

<keyId>LaBr_38x38_Q690_1282741237941</keyId>

<idKey>1523</idKey>

<databaseId>snitch22@kemi.stuk.fi</databaseId>

</externalKeys>

<externalKeys>

<keyType>cal</keyType>

<keyId>LaBr_38x38_Q690_INSITU</keyId>

<idKey>5</idKey>

<databaseId>snitch22@kemi.stuk.fi</databaseId>

</externalKeys>

</otherData>

</LML>
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Chapter 12

Administrative Issues and Lessons
Learnt

During the testing phase of Linssi, the following important lessons were learnt:

1. The organization utilizing Linssi shall define its procedures prior to introducing Linssi

as an operational database. The design goal of Linssi was to keep it sufficiently flexible
for different users, but it is likely that old procedures need to be adjusted for utilizing
Linssi in the most efficient way.

2. There should be at least two databases running at the same time: an operational
database for strict business and a test database for making all kinds of experiments,
testing new queries etc. This secures the integrity of the operational database and still
enables further development of the system.

3. Running a database requires an administrator. His/her major tasks are to constantly
monitor the functionality and integrity of the database and to maintain and develop
efficient database scripts for the basic users. An experienced administrator could write
scripts that alarm him/her automatically by e-mail or text message if anything out of
the ordinary is happening in the database.

4. Basic database users should not make any complicated SQL queries, since they can
mess up the database or at least block its usage. Model scripts and queries should
be made available by the administrator and collected to a place available to all users.
Database access through well-designed web forms would be preferable.

5. The ability of an SQL database for parallel processing is very limited. If you make a
large query, it is likely to block the database from all other queries, especially those
inserting new data to the database. Housekeeping of the database should be scheduled
to out-of-office hours.

6. If you run so large a query in MySQL that the results do not fit into memory, MySQL
will start writing them under its temporary data directory on the /var-disk. Therefore,
the hard disk of the database server should be partitioned cleverly. It is possible that
even making the /var-disk a separate partition is not sufficient, as it is also used by
many other processes than MySQL. If MySQL fills the disk, probably nothing will
work.
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7. If the design of a query is not optimal, it may start stealing computing resources (see
point 6). In MySQL, a query can be exited by pressing Ctrl-C, but it will keep running
in the background until explicitly killed. The kill procedure is the following:

a. find out the process idNumber inside MySQL: show processlist;

b. kill the process: kill idNumber;

8. MySQL has a very informative operational manual available on the web. All database
users should at least have a glance at the manual prior to using the database. The
manual is likely to be needed in any troubleshooting situation. A printed version may
also be useful sometimes.

9. If there are 16k spectra to be analyzed, the default limits of MySQL may be exceeded
by the database reports. To allow processing of these large reports, the MySQL daemon
shall be started with an option increasing the maximum packet size:

% mysqld --max_allowed_packet=10M

Alternatively, this setting can be made in the [mysqld] section of the configuration
file /etc/mysql/my.cnf.

10. The analysisBlocks table is by far the largest one due to the three longblob’s (base-
line, stripped spectrum, peak search significance) stored in the table in a single analysis
by default. If large amounts (tens of analyses per day) of data are stored to Linssi,
the size may grow larger than the maximum table size allowed by default by MySQL,
more exactly its default engine MyISAM. There are two alternative solutions:

a. Increase the maximum MyISAM table size by MySQL command line arguments.
One UniSampo-Shaman analysisa takes an average of 400 kB of space, and by
default, the maximum size of a MyISAM table is 4 GB. Thus, the analysisBlocks
table in MyISAM format accepts about 10,000 analyses with default settings.

b. Convert the analyses table (or all tables) to InnoDB format that has no size limita-
tions (http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html).
This can be done right after creating the Linssi database or when the database has
been operating any period of time.

In Linssi v.2.3, the default database engine defined in the maketables script is InnoDB
for all database tables.

11. Indexing of fields makes a difference in query run times. The maketables script defines
the most important indexes, but if you experience excessive run times, you should check
that the relational key in your query is indexed. If not, indexing can be requested at
any time, although in a large database it takes time. The time is paid back when
running the queries.

12. There is a bug in the auto-increment feature of InnoDB in some MySQL versions.
It makes the auto-increment keys to skip over integers. For most users this is only a
nuisance, but it can be prevented by using the“traditional”auto-increment mode. This
can be specified in the [mysqld] section of the configuration file /etc/mysql/my.cnf:
innodb_autoinc_lock_mode = 0.

aThe space requirement depends on the analysis software and methods.
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13. We have experience of Linssi databases that contain of the order of 10 million analyses.
In this case the disk space requirement is measured in hundreds of gigabytes or even a
few terabytes. This amount of data can still be managed by MySQL in a single server.
However, the query times are clearly starting to increase to a level that is inconvenient
for the user. This is illustrated by the following tables where simple queries of type
select count (distinct keyX) from tableY; were tried on variously sized Linssi

databases. These results were obtained with the rois table:

Nr of records Size of table Size of database Query time
(GB) (GB) (s)

872,000 0.093 5.4 1.96
7,400,000 1.0 185 25.15
10,100,000 1.4 249 37.98

These results were obtained with the analyses table:

Nr of records Size of table Size of database Query time
(GB) (GB) (s)

282,000 0.162 5.4 0.36
2,700,000 1.3 185 29.39
3,500,000 1.8 249 38.65

On the basis of these data and our experience in practice, our recommendation is to
start a new Linssi at the latest when the number of analyses is measured in millions.
Depending on the organization and its activities, this may mean yearly databases, or
even monthly databases. (Other database engines may be more efficient with huge
databases, but probably the hardware requirements are also more demanding.)
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Appendix A

Installation Instructions for
MySQL-Linssi

A.1 MySQL Database

A Linssi database can be implemented with any SQL engine (MySQL, PostgreSQL, Oracle,
etc.). However, scripts written in Perl and PHP may be engine-dependent. Here we present
installation instructions for Linssi under MySQL.

MySQL database is a commercial package that is included in many Linux distributions,
including RedHat, SuSE, and Ubuntu. It is free for non-commercial use as can be seen from
the license on the MySQL web page http://www.mysql.com. The newest versions of the
database can be found on these pages, as well as a comprehensive online manual.

Linssi v.2.3 requires MySQL version 4.0 or newer. The scripts for Linssi take advantage of
Perl and PHP. For example, the following packages were installed under Ubuntu 10.04 for
Linssi testing purposes:

mysql-client-5.1

mysql-client-core-5.1

mysql-common

mysql-server-5.1

mysql-server-core-5.1

libdbd-mysql-perl

libmysqlclient16

libqt4-sql-mysql

perl

perl-base

perl-modules

php5

php5-cli

php5-common

php5-gd

php5-mysql

php-pear
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libapache2-mod-php5

libphp-jpgraph

This list is only meant for illustration, since the naming of packages varies from distribution
to another. Some of the listed packages come in the default installation, some must be
selected, and some others come as dependencies of the selected packages. In addition to
Ubuntu, the Linssi v.2.3 scripts have been in production use under CentOS and SuSE.

The system is to be set up using a suitable Linux system configuration tool to start MySQL
automatically at boot time. When everything is installed, log in to the MySQL database
to change the MySQL root password (NOTE: different from the root password of the Linux
system):

% mysql -u root

Change the password to new_password (or something else):

mysql> use mysql;

mysql> update user set password=password(’new_password’) where user=’root’;

mysql> flush privileges;

Now is time to generate the Linssi database and some users for the database. In the example
below, the user webbi may only view the results and the user xunil can do nearly anything
but delete the database. The former is to be used by database viewing scripts and the latter
by scripts that modify the contents of the database.

mysql> create database linssi;

mysql> grant select on linssi.* to webbi@localhost;

mysql> grant create,lock tables,insert,select,update on linssi.* to \

xunil@localhost identified by ’some_password’;

mysql> show grants for xunil@localhost;

If you are running the Shaman spectrum categorizer categor2, the following grant that
allows loading of files into Linssi must also be made:

mysql> grant file on *.* to xunil@localhost;

The Linssi database was created, but it does not contain any tables yet. A perl script called
maketables is provided in the Linssi package to install the basic tables for result storage.
The script fillfunctions shall be invoked right after in order to fulfill the foreign key
requirements when storing analysis results to Linssi. The success can be checked with the
scripts desctables and listtables that also belong to the Linssi package.

In order to use these scripts, the environmental variable PERL5LIB probably needs to be
defined to point to the directory where the Perl library of Linssi linssiConfig.pm resides.
Let us assume that the directory is /usr/local/gamma/linssi2 and the bash shell is used.
The chain of commands is:

% export PERL5LIB=${PERL5LIB}:/usr/local/gamma/linssi2

% cd /usr/local/gamma/linssi2

% maketables -d linssi -u xunil -p some_password

% fillfunctions -d linssi -u xunil -p some_password

% desctables -d linssi -u webbi | less

% listtables -d linssi -u webbi | less
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The directory for database scripts shall be defined in each user’s Linssi configuration file
.linssirc (see Sec. 2.2). The most important script is lmltodb that imports analysis
results to Linssi. When using UniSampo and Shaman with Linssi, there should be a
symbolic link named shtodb pointing to ../shaman/bin/shtodb2 and another link called
ustodb pointing to ../shaman/bin/ustodb2.a

To log in the database as the user webbi, a password is not required:

% mysql linssi -u webbi

User xunil needs password, so the system requires that the password is given either on the
command line (not recommended), at a separate prompt, or in the Linssi configuration file
.linssirc in the home directory (see Sec. 2.2). Assuming the second alternative:

% mysql linssi -u xunil -p

Only MySQL root user may delete the whole database. This is done with command drop

inside MySQL database. The following example deletes the whole database and its contents:

% mysql -u root -p

mysql> drop database linssi;

When some data has been imported to the database, its contents can be browsed on MySQL
command line using the select-command or using the database browsing scripts provided
in the Linssi package as presented elsewhere in this document.

A.2 Installation of the Linssi PHP Scripts

In order to use PHP scripts and web features there should be a webserver, like Apache,
installed and running. These instructions are written for Apache, but any other webserver
can be used with only minor modifications.

Installation of the main Linssi PHP scripts is very simple. Extract the script package into
a directory within the webserver’s document root and edit linssiConfig.php configuration
file (see Sec. 2.2) to set available databases, paths to external libraries and other configuration
directives. Directory where files are extracted is here expected to be /var/www/html/, but
it may vary depending on the system used.

Instructions on setting the database access credentials and installing the required (and op-
tional) external packages are given in the following sections. Every command in this section
should be given as the Unix root user.

A.2.1 Database Access Credentials

A good method and the one recommended by the PHP security consortium
(http://phpsec.org/projects/guide/) to protect database access credentials is to store
them into Apache’s environment variables. Create a file that only root can read with the
following lines:

aOther necessary configuration for connecting UniSampo and Shaman with Linssi is documented in the

USS installation instructions.

72

http://phpsec.org/projects/guide/


SetEnv read_username "webbi"

SetEnv read_password ""

SetEnv write_username "xunil"

SetEnv write_password "some_password"

Usernames and passwords should be equivalent to those used when creating the database.
Since there was no password for user webbi, the value of read_password is also left empty.
We have chosen to save this file as dbConfig into directory /var/includes/. Filename and
location can be chosen freely, but for security reasons, it should not be saved in webserver
document root among the PHP scripts.

Include this file within Apache’s configuration file httpd.conf by adding the line:

Include /var/includes/dbConfig

In some Linux distributions the httpd.conf file is located in directory /etc/httpd/conf.
The filename can also be something else, like httpd2.conf.

Restart Apache. Now the access credentials can be found from the superglobal $_SERVER[]
array. Just be careful not to expose these variables with something like phpinfo() or
print_r($_SERVER).

By default Linssi PHP scripts expect that the database access credentials are stored in
Apache’s environment variables as decribed above, but the credentials can also be set di-
rectly in linssiConfig.php (see Sec. 2.2) by replacing the $_SERVER["read_username"]

etc. variables with the actual usernames and passwords. This is not recommended on public
servers.

A.2.2 Installing JpGraph

The graphics in these scripts requires a PHP package named JpGraph that is available from
http://jpgraph.net/. Extract the JpGraph package into any directory readable by PHP.
By default, the path /var/www/html/php/jpgraph/src is defined in the linssiConfig.php
file. When using some other installation directory, edit linssiConfig.php configuration file
to set the JpGraph path variable pointing to the src-directory of your JpGraph installation.

A.2.3 Getting Analysis Reports in PDF Format

A modified version of the html2fpdf library is required to get the analysis reports in PDF
format. The original library is available from http://html2fpdf.sourceforge.net, but T.
Salonen has modified it in order to be able to use png-figures generated dynamically by PHP
in Linssi reports. The modified library is distributed with Linssi scripts and it should be
used in this context.

Installation of the html2fpdf is similar to the installation of JpGraph. Extract the package
into any directory readable by PHP and set the installation path in the linssiConfig.php
configuration file. By default, the directory /var/www/html/php/pdf is assumed.

A.2.4 Getting Sample Reports in XLS Format

The Pear::OLE and Pear::Spreadsheet_Excel_Writer packages are required to get sample
reports in XLS format (MS-Excel spreadsheet). Pear is a PHP extension and application
repository and it is usually installed by default with all recent PHP distributions.
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Installation of the required Pear packages:

% pear install OLE

% pear install Spreadsheet_Excel_Writer

If there are only beta versions of these packages available, the installation has to be performed
with the -d option:

% pear -d preferred_state=’beta’ install OLE

% pear -d preferred_state=’beta’ install Spreadsheet_Excel_Writer

The Pear packages are usually installed in the directory /usr/share/pear, which is also the
default path in linssiConfig.php.

A.2.5 HTTP Authentication

Updates to the database are controlled with HTTP authentication when done through a
web interface. For this to work, a password file must be created with Apache’s htpasswd

program in the following way:

% htpasswd [-c] /var/includes/.htpasswd some_username

htpasswd will prompt you for the password. This creates a new password file and adds the
user some_username to the file. The -c flag is used only when you are creating a new file.
After the first time, you shall omit the -c flag. If using some other directory or filename,
edit linssiConfig.php to define the path to the created password file.
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Appendix B

Installation Instructions for
PostgreSQL-Linssi

B.1 PostgreSQL Database

A Linssi database can be implemented with any SQL engine (MySQL, PostgreSQL, Oracle,
etc.). However, scripts written in Perl and PHP may be engine-dependent. Here we present
installation instructions for Linssi under PostgreSQL.

PostgreSQL is an open source object-relational database system available for all major oper-
ating systems including Linux, many flavors of Unix, and Windows. In Linux it is packaged
in many distributions including, but not limited to, Debian, CentOS, Fedora, Red Hat, and
Ubuntu. It is released under the PostgreSQL License similar to the BSD or MIT licenses,
and is free to use for any purpose.

PostgreSQL version 9.1 or newer is recommended with Linssi v 2.3. Mixed installation of
9.1 server on the database server and 8.4 client libraries on a separate webserver is known
to work. Using 8.4 server is untested and is not recommended.

Here we give instructions on how to install a PostgreSQL database server version 9.3 in
Ubuntu 14.04.02 LTS desktop.The installation provides remote access through http-server
giving access to local Linssi scripts. The scripts are written in PHP and perl. For PHP
version 5.3 or newer is recommended. 5.2 will probably work, but has not been tested. The
perl scripts require version 5.10.1 or newer

It should be noted that by default the Ubuntu desktop software package does not include a
http-server. We have installed Apache2.

At least the following (sub)packages provided by Ubuntu software center are needed to run
Linssi scripts:

postgresql-9.3

postgresql-client-9.3

postgresql-client-common

postgresql-common

libpq5

libdbd-pg-perl

libdbi-perl
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perl

perl-base

perl-modules

php5

php5-cli

php5-common

php5-gd

php5-pgsql

php-pear

apache2

libapache2-mod-php5

libxml-libxml-perl

This list is only meant for illustration, since the naming of packages varies from distribution
to another. Some of the listed packages come in the default installation, some must be
selected, and some others come as dependencies of the selected packages.

In addition to the above, there are Linssi scripts needing software not supported by the
Ubuntu software repository. This software is provided with the Linssi scripts package.

B.2 Installing PostgreSQL

Package installation in Ubuntu is done either using the command sudo apt-get install

or the Ubuntu Software Center (USC) to find and install the required packages. Use
the USC search window to find the relevant packages. The following search words can
be used to find the corresponding packages: apache2, postgresql, php5, php-pear,

libdbi-perl, libdbd-pg-perl, php5-pgsql, and libxml-libxml-perl. Install all of them
by clicking the package name and selecting ’Install’. You can find out the already installed
software by selecting ’Installed’ in the USC. Note that you have to click the ’Show nnnn
technical items’ text to see all the packages.

The system is to be set up using a suitable Linux system configuration tool to start Post-
greSQL automatically at boot time. In Ubuntu this is done automatically when installing
the postgresql package.

B.3 Creating PostgreSQL Users

In a typical configuration of PostgreSQL in Linux systems, the user postgres can con-
nect to databases with the database super user privileges without a password, i.e., peer
authentication. Thus it is recommended to create Linux user postgres and do all database
administration with that identity.

To create other users first login to Linux as user postgres.

Best way to create users with password is with the createuser tool using -P option for
password prompt. This avoids clear text password being visible on command line or recorded
in database log. In our example we create two users, one for reading and another with write
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privileges. Answer no to all questions about granting various super user privileges to the
new users. Below $-sign marks the Linux prompt.

$ createuser -P xunil

$ createuser -P webbi

Access to a database is controlled, not only by user definitions alone, but also in the config
file pg_hba.conf in PostgreSQL config directory /etc/postgresql/9.3/maı́n/. To allow
the users created above to connect to database linssi with password over Unix domain
socket, the following row or a broader definition has to added in the config file.

local linssi xunil,webbi md5

For network based access use

host linssi xunil,webbi 192.168.0.0/24 md5

adjusting the allowed IP address range as necessary or use keyword all to allow any address.

After editing the config of a running database, forced reload of config is required for the
changes to take effect.

$ /etc/init.d/postgresql reload

B.4 Creating Database Linssi

Still as the user postgres connect to PostgreSQL

$ psql

Note that commands given when using psql, the command line interface to PostgreSQL,
are below identified by the prompt #.

In this example we create both the new database linssi and the schema linssi23 in it and
grant privileges to its users. On an existing server setup it may be necessary to only create
one or more schemas in an already existing database. The user xunil is made the owner of
the new schema, giving all the privileges in the new schema, including dropping the schema
and granting privileges within the schema.

# create database linssi;

# \c linssi

# create schema linssi23 authorization xunil;

The user webbi has no privileges by default. There are two approaches to giving the
necessary select privilege.

# alter default privileges for user xunil grant select on tables to webbi;

will grant user webbi select privileges on any tables created by user xunil in the future.
Alternatively privileges can be granted with standard grant statement
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# grant select on all tables in schema linssi23 to webbi;

# grant usage on schema linssi23 to webbi;

but that will only apply to objects that exist at the time, so it would do nothing right now
when used before creating the linssi23 tables.

Linssi core scripts will always set session default to value given in the configuration, but
setting user default in database is useful if direct usage with the psql client is needed. This
can be done by the commands

#alter user webbi set search_path to linssi23;

#alter user xunil set search_path to linssi23;

#\q

B.5 Using PostgreSQL Commands on Linssi

To log in the database Linssi as the user webbi or xunil,

$ psql -d linssi -U webbi

Password is required for both accounts and will be prompted for, unless password is given
in config file /.pgpass

When some data has been imported to the database, its contents can be browsed on Post-
greSQL command line using the select-command. This is, however, not recommended. In
order to make efficient use of the data some expertise is needed and that should be aimed at
writing useful scripts. Some of them are available in the core distribution. See below.

B.6 Installing Linssi Perl Scripts

In order to create and manipulate Linssi tables and data a set of around 20 Perl scripts
is provided in the Linssi core scripts. These database scripts need to be copied to the
directory defined in each user’s Linssi configuration file .linssirc, and in Linssi PHP scripts
configuration file linssiConfig.php (see Sec. 2.2).

In addition, in order to use these scripts, the environmental variable PERL5LIB needs to be set
to point the Perl directory. Let us assume that the directory is /usr/local/gamma/linssi2
and the bash shell is used. The chain of commands is:

$ export PERL5LIB=${PERL5LIB}:/usr/local/gamma/linssi2

$ cd /usr/local/gamma/linssi2

$ chmod u+x *

where also the execution rights have been given to the user. Users should also include the
above export command to their .bashrc scripts.

B.7 Creating and Filling Linssi Tables

A perl script called maketables_pgsql is provided in the Linssi package to install the tables
for results storage. The success can be checked with the script desctables, which also
belongs to the Linssi package.
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$ maketables_pgsql -d linssi -sc linssi23 -u xunil -p some_password

$ desctables -d linssi -u webbi | less

The filling of Linssi tables is normally provided by the measurement and analysis software
used in your laboratory. For example, when using UniSampo and Shaman with Linssi, you
need a symbolic link named shtodb pointing to ../shaman/bin/shtodb2 and another link
called ustodb pointing to ../shaman/bin/ustodb2. a

Your existing analysis results can be imported to the database using the script lmltodb. It
takes an LML file as input and stores the data to Linssi. LML stands for Linssi Markup
Language, which is written in XML to facilitate data import to Linssi.

B.8 Installing Linssi PHP Scripts

In order to use PHP scripts and web features there should be a webserver, like Apache,
installed and running. These instructions are written for Apache, but any other webserver
can be used with only minor modifications.

Installation of the main Linssi PHP scripts is very simple. Extract the script package into
a directory within the webserver’s document root and edit linssiConfig.php configuration
file (see Sec. 2.2) to set available databases, paths to external libraries and other configuration
directives. Directory where files are extracted is here expected to be /var/www/html/, but
it may vary depending on the system used.

Instructions on setting the database access credentials and installing the required (and op-
tional) external packages are given in the following sections. Every command in this section
should be given as the Unix root user.

If running Linssi databases under both MySQL and PostgreSQL, eg., for testing purposes,
separate installations of PHP scripts are needed for MySQL and PostgreSQL. On the other
hand, single installation of these scripts can access several Linssi database instances running
on the same server provided these can be accessed with the same user credentials.

B.8.1 Database Access Credentials

A good method and the one recommended by the PHP security consortium
(http://phpsec.org/projects/guide/) to protect database access credentials is to store
them into Apache environment variables. How to set these variables depends on the instal-
lation. In Ubuntu 14.04.02 LTS the typical configuration file, httpd.conf or httpd2.conf,
does not exist by default.

Create the file /etc/apache2/httpd2.conf, insert there the following lines:

SetEnv read_username "webbi"

SetEnv read_password "some_password"

SetEnv write_username "xunil"

SetEnv write_password "some_password"

and add the command Include /etc/apache2/httpd2.conf as the last line of the file
/etc/apache2/apache2.conf. Reload Apache configuration

aOther necessary configuration for connecting UniSampo and Shaman with Linssi is documented in the

USS installation instructions.
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$ /etc/init.d/apache2 reload

Now the access credentials can be found from the superglobal $_SERVER[] array. Just be
careful not to expose these variables with something like phpinfo() or print_r($_SERVER).

The function phpinfo() can be disabled by editing the file /etc/php5/apache2/phpi.ini.
Add phpinfo to the list disabled functions in the line disable_functions = .... In addi-
tion, in order to stop printing of the credentials unauthorized users must not have rights to
write PHP (or other) scripts for Apache to execute.

By default Linssi PHP scripts expect that the database access credentials are stored in
Apache environment variables as described above, but the credentials can also be set di-
rectly in linssiConfig.php (see Sec. 2.2) by replacing the $_SERVER["read_username"]

etc. variables with the actual usernames and passwords. This is not recommended on public
servers.

B.8.2 HTTP Authentication

Updates to the database are controlled with HTTP authentication when done through a
web interface. For this to work, a password file must be created with Apache’s htpasswd

program in the following way:

$ htpasswd -c -d /var/www/includes/.htpasswd some_username

and htpasswd will prompt you for the password. This creates a new password file and adds
the user some_username to the file. The -c flag is used only when you are creating a new file.
After the first time, you should omit the -c flag. If using some other directory or filename,
edit linssiConfig.php to define the path to the created password file. The -d flag is used
to match with the crypt() encryption method of the Linssi php scripts.

B.8.3 Installing JpGraph

The graphics in these scripts requires a PHP package named JpGraph that is available from
http://jpgraph.net/. The latest free release is Ver: 3.07 from January 2010. This version
is distributed with Linssi scripts and should be used in this context.

Extract the PHP source code of the JpGraph package, i.e., the contents of the src directory,
into any directory readable by PHP and set the installation path in the linssiConfig.php
configuration file. By default, the directory /var/www/html/jpgraph is assumed.

B.8.4 Getting Analysis Reports in PDF Format

A modified version of the html2fpdf library is required to get the analysis reports in PDF
format. The original library is available from http://html2fpdf.sourceforge.net, but T.
Salonen has modified it in order to be able to use png-figures generated dynamically by PHP
in Linssi reports. The modified library is distributed with Linssi scripts and it should be
used in this context.

Extract the html2fpdf package into any directory readable by PHP and set the installation
path in the linssiConfig.php configuration file. By default, the directory /var/www/html/pdf
is assumed.
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B.8.5 Getting Sample Reports in XLS Format

The Pear::OLE and Pear::Spreadsheet_Excel_Writer packages are required to get sample
reports in XLS format. Pear is a PHP extension and application repository and it is usually
installed by default with all recent PHP distributions.

Installation of the required Pear packages should go like this:

$ pear install OLE

$ pear install Spreadsheet_Excel_Writer

Unfortunately, there seems to be only beta versions of these packages available. Their in-
stallation has to be performed with the -d option as:

$ pear -d preferred_state="beta" install OLE

$ pear -d preferred_state="beta" install Spreadsheet_Excel_Writer

The Pear packages are usually installed in the directory /usr/share/php, which is also the
default path in linssiConfig.php.

In the beta version, at least, there is an error on the line 2490 of the script
/usr/share/php/Spreadsheet/Excel/Writer/Worksheet.php. Remove & from the line:
$this -> _append(&$string,true);. In addition, the produced XLS format is not read-
able with all the versions of Microsoft Excel. However, it will be readable when saved from
Libre Office.
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Appendix C

Installation Instructions for
MariaDB-Linssi

C.1 MySQL Database

A Linssi database can be implemented with any SQL engine (MariaDB, MySQL, Post-
greSQL, Oracle, etc.). However, scripts written in Perl and PHP may be engine-dependent.
Here we present installation instructions for Linssi under MariaDB.

MariaDB is open source relational database. It is an enhanced, drop-in replacement for
MySQL. It is available for many Linux distributions, including RedHat, SuSE, and Ubuntu.
The newest versions of the database can be found on https://mariadb.org.

In addition to MariaDB software Linssi distribution takes advantage of Perl and PHP. For
example, the following packages were installed under Ubuntu 14.04 for Linssi testing pur-
poses:

MariaDB common metapapackage

MariaDB database client binaries

MariaDB database client library

MariaDB database core client binaries

MariaDB database core server files

MariaDB database server binaries

libhtml-template-perl

libdb-mysql-perl

libdbi-perl

perl

perl-base

perl-modules

php5

php5-cli

php5-common

php5-gd

php5-mysql

php-pear
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apache2

libapache2-mod-php5

libphp-jpgraph

libxml-libxml-perl

This list is only meant for illustration, since the naming of packages varies from distribution
to another. Some of the listed packages come in the default installation, some must be
selected, and some others come as dependencies of the selected packages. In addition to
Ubuntu, the Linssi v.2.3 scripts have been in production use under CentOS and SuSE.

In addition to the above, there are Linssi scripts needing software not supported by the
Ubuntu software repository. This software is provided with the Linssi scripts package.

C.2 Installing MariaDB

Package installation in Ubuntu is done either using the command sudo apt-get install

or the Ubuntu Software Center (USC) to find and install the required packages. Use the
USC search window to find the relevant packages. The following search words can be used
to find the corresponding packages: apache2, mariadb, php5, php-pear, libdbi-perl,
php5-mysql, and libxml-libxml-perl. Install all of them by clicking the package name
and selecting ’Install’. You can find out the already installed software by selecting ’Installed’
in the USC. Note that you have to click the ’Show nnnn technical items’ text to see all the
packages.

The system is to be set up using a suitable Linux system configuration tool to start Mari-
aDB automatically at boot time. In Ubuntu this is done automatically when installing the
MariaDB common metapackage package.

C.3 Creating Linssi Database And Its Users

When everything is installed, log in to the MySQL database to change the MySQL root
password (NOTE: different from the root password of the Linux system):

$ mysql -u root -p

Change the password to new_password (or something else):

MariaDB[(none)]> use mysql;

MariaDB[(mysql)]> update user set password=password(’new_password’) where

user=’root’;

MariaDB[(mysql)]> flush privileges;

Now is time to generate the Linssi database and some users for the database. In the example
below, the user webbi may only view the results and the user xunil can do nearly anything
but delete the database. The former is to be used by database viewing scripts and the latter
by scripts that modify the contents of the database.

MariaDB[(mysql)]> create database linssi;

MariaDB[(mysql)]> grant select on linssi.* to webbi@localhost identified by
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’some_read_password’;

MariaDB[(mysql)]> show grants for webbil@localhost;

MariaDB[(mysql)]> grant create,lock tables,insert,select,update on linssi.*

to xunil@localhost identified by ’some_write_password’;

MariaDB[(mysql)]> show grants for xunil@localhost;

If you are running the Shaman spectrum categorizer categor2, the following grant that
allows loading of files into Linssi must also be made:

MariaDB[(mysql)]> grant file on *.* to xunil@localhost identified by

’some_write_password’;

MariaDB[(mysql)]> \q

C.4 Installing Linssi Perl Scripts

In order to create and manipulate Linssi tables and data a set of around 20 Perl scripts
is provided in the Linssi core scripts. These database scripts need to be copied to the
directory defined in each user’s Linssi configuration file .linssirc, and in Linssi PHP scripts
configuration file linssiConfig.php (see Sec. 2.2).

In addition, in order to use these scripts, the environmental variable PERL5LIB needs to be set
to point the Perl directory. Let us assume that the directory is /usr/local/gamma/linssi2
and the bash shell is used. The chain of commands is:

$ export PERL5LIB=${PERL5LIB}:/usr/local/gamma/linssi2

$ cd /usr/local/gamma/linssi2

$ chmod u+x *

where also the execution rights have been given to the user. Users should also include the
above export command to their .bashrc scripts.

C.5 Creating and Filling Linssi Tables

The Linssi database was created, but it does not contain any tables yet. A perl script called
maketables_mysql is provided in the Linssi package to install the basic tables for result
storage.The success can be checked with the scripts desctables and listtables that also
belong to the Linssi package.

The chain of commands is:

$ cd /usr/local/gamma/linssi2

$ maketables_mysql -d linssi -u xunil -p some_write_password

$ desctables -d linssi -u webbi | less

$ listtables -d linssi -u webbi | less

The filling of Linssi tables is normally provided by the measurement and analysis software
used in your laboratory. For example, when using UniSampo and Shaman with Linssi, you
need a symbolic link named shtodb pointing to ../shaman/bin/shtodb2 and another link
called ustodb pointing to ../shaman/bin/ustodb2. a

aOther necessary configuration for connecting UniSampo and Shaman with Linssi is documented in the

USS installation instructions.
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Your existing analysis results can be imported to the database using the script lmltodb. It
takes an LML file as input and stores the data to Linssi. LML stands for Linssi Markup
Language, which is written in XML to facilitate data import to Linssi.

C.6 Using MySQL Commands on Linssi

To login to database the system requires that the password is given either on the command
line (not recommended), at a separate prompt, or in the Linssi configuration file /.my.cnf

in the home directory (see Sec. 2.2). Assuming the second alternative: To log in the database
as the user webbi, a read password is required:

$ mysql linssi -u webbi -p

To log in the database as the user xunil, a write password is required:

$ mysql linssi -u xunil -p

Only MySQL root user may delete the whole database. This is done with command drop

inside MySQL database. The following example deletes the whole database and its contents:

$ mysql -u root -p

MariaDB[(none)]> drop database linssi;

When some data has been imported to the database, its contents can be browsed on MySQL
command line using the select-command. This is, however, not recommended. In order to
make efficient use of the data some expertise is needed and that should be aimed at writing
useful scripts. Some of them are available in the core distribution.

C.7 Installing Linssi PHP Scripts

In order to use PHP scripts and web features there should be a webserver, like Apache,
installed and running. These instructions are written for Apache, but any other webserver
can be used with only minor modifications.

Installation of the main Linssi PHP scripts is very simple. Extract the script package into
a directory within the webserver’s document root and edit linssiConfig.php configuration
file (see Sec. 2.2) to set available databases, paths to external libraries and other configuration
directives. Directory where files are extracted is here expected to be /var/www/html/, but
it may vary depending on the system used.

Instructions on setting the database access credentials and installing the required (and op-
tional) external packages are given in the following sections. Every command in this section
should be given as the Unix root user.

If running Linssi databases under both MySQL and PostgreSQL, eg., for testing purposes,
separate installations of PHP scripts are needed for MySQL and PostgreSQL. On the other
hand, single installation of these scripts can access several Linssi database instances running
on the same server provided these can be accessed with the same user credentials.
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C.7.1 Database Access Credentials

A good method and the one recommended by the PHP security consortium
(http://phpsec.org/projects/guide/) to protect database access credentials is to store
them into Apache environment variables. How to set these variables depends on the instal-
lation. In Ubuntu 14.04.02 LTS the typical configuration file, httpd.conf or httpd2.conf,
does not exist by default.

Create the file /etc/apache2/httpd2.conf, insert there the following lines:

SetEnv read_username "webbi"

SetEnv read_password "some_read_password"

SetEnv write_username "xunil"

SetEnv write_password "some_write_password"

Usernames and passwords must be equivalent to those used when creating the database.

Add the command Include /etc/apache2/httpd2.conf as the last line of the file
/etc/apache2/apache2.conf. Reload Apache configuration

$ /etc/init.d/apache2 reload

Now the access credentials can be found from the superglobal $_SERVER[] array. Just be
careful not to expose these variables with something like phpinfo() or print_r($_SERVER).

The function phpinfo() can be disabled by editing the file /etc/php5/apache2/phpi.ini.
Add phpinfo to the list disabled functions in the line disable_functions = .... In addi-
tion, in order to stop printing of the credentials unauthorized users must not have rights to
write PHP (or other) scripts for Apache to execute.

By default Linssi PHP scripts expect that the database access credentials are stored in
Apache environment variables as described above, but the credentials can also be set di-
rectly in linssiConfig.php (see Sec. 2.2) by replacing the $_SERVER["read_username"]

etc. variables with the actual usernames and passwords. This is not recommended on public
servers.

C.7.2 HTTP Authentication

Updates to the database are controlled with HTTP authentication when done through a
web interface. For this to work, a password file must be created with Apache’s htpasswd

program in the following way:

$ htpasswd -c -d /var/www/includes/.htpasswd some_username

and htpasswd will prompt you for the password. This creates a new password file and adds
the user some_username to the file. The -c flag is used only when you are creating a new file.
After the first time, you should omit the -c flag. If using some other directory or filename,
edit linssiConfig.php to define the path to the created password file. The -d flag is used
to match with the crypt() encryption method of the Linssi php scripts.

C.7.3 Installing JpGraph

The graphics in these scripts requires a PHP package named JpGraph that is available from
http://jpgraph.net/. The latest free release is Ver: 3.07 from January 2010. This version
is distributed with Linssi scripts and should be used in this context.
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Extract the PHP source code of the JpGraph package, i.e., the contents of the src directory,
into any directory readable by PHP and set the installation path in the linssiConfig.php
configuration file. By default, the directory /var/www/html/jpgraph is assumed.

C.7.4 Getting Analysis Reports in PDF Format

A modified version of the html2fpdf library is required to get the analysis reports in PDF
format. The original library is available from http://html2fpdf.sourceforge.net, but T.
Salonen has modified it in order to be able to use png-figures generated dynamically by PHP
in Linssi reports. The modified library is distributed with Linssi scripts and it should be
used in this context.

Extract the html2fpdf package into any directory readable by PHP and set the installation
path in the linssiConfig.php configuration file. By default, the directory /var/www/html/pdf
is assumed.

C.7.5 Getting Sample Reports in XLS Format

The Pear::OLE and Pear::Spreadsheet_Excel_Writer packages are required to get sample
reports in XLS format. Pear is a PHP extension and application repository and it is usually
installed by default with all recent PHP distributions.

Installation of the required Pear packages should go like this:

$ pear install OLE

$ pear install Spreadsheet_Excel_Writer

Unfortunately, there seems to be only beta versions of these packages available. Their in-
stallation has to be performed with the -d option as:

$ pear -d preferred_state="beta" install OLE

$ pear -d preferred_state="beta" install Spreadsheet_Excel_Writer

The Pear packages are usually installed in the directory /usr/share/php, which is also the
default path in linssiConfig.php.

In the beta version, at least, there is an error on the line 2490 of the script
/usr/share/php/Spreadsheet/Excel/Writer/Worksheet.php. Remove & from the line:
$this -> _append(&$string,true);. In addition, the produced XLS format is not read-
able with all the versions of Microsoft Excel. However, it will be readable when saved from
Libre Office.
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